Skip to main content
Chemistry LibreTexts

21: Chemistry of The Main-Group Elements I

  • Page ID
    11746
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    • 21.1: Periodic Trends and Charge Density
      The most important unifying principle in describing the chemistry of the elements is that the systematic increase in atomic number and the orderly filling of atomic orbitals lead to periodic trends in atomic properties. The most fundamental property leading to periodic variations is the effective nuclear charge (Zeff). Because of the position of the diagonal line separating metals and nonmetals in the periodic table, the chemistry of groups 13, 14, and 15 is relatively complex.
    • 21.2: Group 1: The Alkali Metals
      Li, Na, K, Rb, and Cs are all group IA elements, also known as the alkali metals. The seventh member of the group, francium (Fr) is radioactive and so rare that only 20 atoms of Fr may exist on Earth at any given moment. The term alkali is derived from an Arabic word meaning “ashes.” Compounds of potassium as well as other alkali metals were obtained from wood ashes by early chemists.
    • 21.3: Group 2: The Alkaline Earth Metals
      Group 2 elements almost exclusively form ionic compounds containing the M2+ ion, they are more reactive toward group 15 elements, and they have a greater tendency to form complexes with Lewis bases than do the alkali metals. Pure samples of most of the alkaline earth metals can be obtained by electrolysis of the chlorides or oxides. Beryllium was first obtained by the reduction of its chloride; radium chloride, which is radioactive, was obtained through a series of reactions and separations.
    • 21.4: Group 13: The Boron Family
      Compounds of the group 13 elements with oxygen are thermodynamically stable. Many of the anomalous properties of the group 13 elements can be explained by the increase in Zeff moving down the group. Isolation of the group 13 elements requires a large amount of energy because compounds of the group 13 elements with oxygen are thermodynamically stable. Boron behaves chemically like a nonmetal, whereas its heavier congeners exhibit metallic behavior.
    • 21.5: Group 14: The Carbon Family
      The group 14 elements show the greatest diversity in chemical behavior of any group; covalent bond strengths decease with increasing atomic size, and ionization energies are greater than expected, increasing from C to Pb. The group 14 elements show the greatest range of chemical behavior of any group in the periodic table. Because the covalent bond strength decreases with increasing atomic size and greater-than-expected ionization energies due to an increase in Zeff.
    • 21.E: Exercises


    21: Chemistry of The Main-Group Elements I is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?