Skip to main content
Chemistry LibreTexts

22: Chemistry of The Main-Group Elements II

  • Page ID
    11747
    • 22.1: Periodic Trends in Bonding
    • 22.2: Group 18 - The Noble Gases
      The noble gases are characterized by their high ionization energies and low electron affinities. Potent oxidants are needed to oxidize the noble gases to form compounds in positive oxidation states. The noble gases have a closed-shell valence electron configuration. The ionization energies of the noble gases decrease with increasing atomic number. Only highly electronegative elements can form stable compounds with the noble gases in positive oxidation states without being oxidized themselves.
    • 22.3: Group 17: The Halogens
      The halogens are highly reactive. All halogens have relatively high ionization energies, and the acid strength and oxidizing power of their oxoacids decreases down the group. The halogens are so reactive that none is found in nature as the free element; instead, all but iodine are found as halide salts with the X− ion. Their chemistry is exclusively that of nonmetals.
    • 22.4: Group 16: The Oxygen Family
      The chalcogens have no stable metallic elements. The tendency to catenate, the strength of single bonds, and the reactivity all decrease moving down the group. Because the electronegativity of the chalcogens decreases down the group, so does their tendency to acquire two electrons to form compounds in the −2 oxidation state. The lightest member, oxygen, has the greatest tendency to form multiple bonds with other elements. It does not form stable catenated compounds.
    • 22.5: Group 15: The Nitrogen Family
      The reactivity of the heavier group 15 elements decreases down the group, as does the stability of their catenated compounds. In group 15, nitrogen and phosphorus behave chemically like nonmetals, arsenic and antimony behave like semimetals, and bismuth behaves like a metal. Nitrogen forms compounds in nine different oxidation states. The stability of the +5 oxidation state decreases from phosphorus to bismuth because of the inert-pair effect.
    • 22.6: Hydrogen: A Unique Element
    • 22.E: Exercises

    • Was this article helpful?