Skip to main content
Chemistry LibreTexts

16: The Motivation for Quantum Mechanics

  • Page ID
    416072
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    • 16.1: Introduction
      Quantum mechanics is an important intellectual achievement of the 20th century. It is one of the more sophisticated field in physics that has affected our understanding of nano-meter length scale systems important for chemistry, materials, optics, and electronics. The existence of orbitals and energy levels in atoms can only be explained by quantum mechanics.
    • 16.2: Quantum Mechanics is Bizarre
      The development of quantum mechanics is a great intellectual achievement, but at the same time, it is bizarre. The reason is that quantum mechanics is quite different from classical physics. The development of quantum mechanics is likened to watching two players having a game of chess, but the watchers have not a clue as to what the rules of the game are.
    • 16.3: The Ultraviolet Catastrophe
      The ultraviolet (UV) catastrophe, also called the Rayleigh–Jeans catastrophe, is the prediction of classical electromagnetism that the intensity of the radiation emitted by an ideal black body at thermal equilibrium goes to infinity as wavelength decreases.
    • 16.4: The Photoelectric Effect
      In 1886 and 1887, Heinrich Hertz discovered that ultraviolet light can cause electrons to be ejected from a metal surface. According to the classical wave theory of light, the intensity of the light determines the amplitude of the wave, and so a greater light intensity should cause the electrons on the metal to oscillate more violently and to be ejected with a greater kinetic energy.
    • 16.5: Wave-Particle Duality
      Einstein had shown that the momentum of a photon is p=h/λ.

    Thumbnail: The Photoelectric effect require quantum mechanics to describe accurately (CC BY-SA-NC 3.0; anonymous via LibreTexts).


    This page titled 16: The Motivation for Quantum Mechanics is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Roberto Peverati.

    • Was this article helpful?