Skip to main content
Chemistry LibreTexts

16.1: Introduction

  • Page ID
    416073
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Quantum mechanics is an important intellectual achievement of the 20th century. It is one of the more sophisticated field in physics that has affected our understanding of nano-meter length scale systems important for chemistry, materials, optics, and electronics. The existence of orbitals and energy levels in atoms can only be explained by quantum mechanics. Quantum mechanics can explain the behaviors of insulators, conductors, semi-conductors, and giant magneto-resistance. It can explain the quantization of light and its particle nature in addition to its wave nature. Quantum mechanics can also explain the radiation of hot body, and its change of color with respect to temperature. It explains the presence of holes and the transport of holes and electrons in electronic devices. Quantum mechanics has played an important role in photonics, quantum electronics, and micro-electronics. But many more emerging technologies require the understanding of quantum mechanics; and hence, it is important that scientists and engineers understand quantum mechanics better. One area is nano-technologies due to the recent advent of nano-fabrication techniques. Consequently, nano-meter size systems are more common place. In electronics, as transistor devices become smaller, how the electrons move through the device is quite different from when the devices are bigger: nano-electronic transport is quite different from micro-electronic transport. The quantization of electromagnetic field is important in the area of nano-optics and quantum optics. It explains how photons interact with atomic systems or materials. It also allows the use of electromagnetic or optical field to carry quantum information. Moreover, quantum mechanics is also needed to understand the interaction of photons with materials in solar cells, as well as many topics in material science. When two objects are placed close together, they experience a force called the Casimir force that can only be explained by quantum mechanics. This is important for the understanding of micro/nano-electromechanical sensor systems (M/NEMS). Moreover, the understanding of spins is important in spintronics, another emerging technology where giant magneto-resistance, tunneling magneto-resistance, and spin transfer torque are being used. Quantum mechanics is also giving rise to the areas of quantum information, quantum communication, quantum cryptography, and quantum computing. It is seen that the richness of quantum physics will greatly affect the future generation technologies in many aspects.︎


    This page titled 16.1: Introduction is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Roberto Peverati.

    • Was this article helpful?