Skip to main content
Chemistry LibreTexts

16.2: Quantum Mechanics is Bizarre

  • Page ID
    416074
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    The development of quantum mechanics is a great intellectual achievement, but at the same time, it is bizarre. The reason is that quantum mechanics is quite different from classical physics. The development of quantum mechanics is likened to watching two players having a game of chess, but the watchers have not a clue as to what the rules of the game are. By observations, and conjectures, finally the rules of the game are outlined. Often, equations are conjectured like conjurors pulling tricks out of a hat to match experimental observations. It is the interpretations of these equations that can be quite bizarre. Quantum mechanics equations were postulated to explain experimental observations, but the deeper meanings of the equations often confused even the most gifted. Even though Einstein received the Nobel prize for his work on the photo-electric effect that confirmed that light energy is quantized, he himself was not totally at ease with the development of quantum mechanics as charted by the younger physicists. He was never comfortable with the probabilistic interpretation of quantum mechanics by Born and the Heisenberg uncertainty principle: “God doesn’t play dice,” was his statement assailing the probabilistic interpretation. He proposed “hidden variables” to explain the random nature of many experimental observations. He was thought of as the “old fool” by the younger physicists during his time. Schrödinger came up with the bizarre “Schrödinger cat paradox” that showed the struggle that physicists had with quantum mechanics’s interpretation. But with today’s understanding of quantum mechanics, the paradox is a thing of yesteryear. The latest twist to the interpretation in quantum mechanics is the parallel universe view that explains the multitude of outcomes of the prediction of quantum mechanics. All outcomes are possible, but with each outcome occurring in different universes that exist in parallel with respect to each other.\(^1\)

    The development of quantum mechanics was initially motivated by two observations which demonstrated the inadeqacy of classical physics. These are the “ultraviolet catastrophe” and the photoelectric effect.


    1. This section was adapted in part from Prof. Weng Cho CHEW’s Quantum Mechanics Made Simple Lecture Notes available here.

    This page titled 16.2: Quantum Mechanics is Bizarre is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Roberto Peverati.

    • Was this article helpful?