Skip to main content
Chemistry LibreTexts

16.5: Wave-Particle Duality

  • Page ID
    416077
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Einstein had shown that the momentum of a photon is

    \[ p = \dfrac{h}{\lambda}. \label{17.5.1} \]

    This can be easily shown as follows. Assuming \(E = h \nu\) for a photon and \(\lambda \nu = c\) for an electromagnetic wave, we obtain

    \[ E = \dfrac{h c}{\lambda} \label{17.5.2} \]

    Now we use Einstein’s relativity result, \(E = m c^2\), and the definition of mementum \(p=mc\), to find: \[ \lambda = \dfrac{h}{p}, \label{17.5.3} \]

    which is equivalent to Equation \ref{17.5.1}. Note that \(m\) refers to the relativistic mass, not the rest mass, since the rest mass of a photon is zero. Since light can behave both as a wave (it can be diffracted, and it has a wavelength), and as a particle (it contains packets of energy \(h \nu\)), de Broglie reasoned in 1924 that matter also can exhibit this wave-particle duality. He further reasoned that matter would obey the same Equation \ref{17.5.3} as light. In 1927, Davisson and Germer observed diffraction patterns by bombarding metals with electrons, confirming de Broglie’s proposition.\(^1\)

    Rewriting the previous equations in terms of the wave vector, \(k=\dfrac{2\pi}{\lambda}\), and the angular frequency, \(\omega=2\pi\nu\), we obtain the following two equations

    \[ \begin{aligned} p &= \hbar k \\ E &= \hbar \omega, \end{aligned} \label{17.5.4} \]

    which are known as de Broglie’s equations. We will use those equation to develop wave mechanics in the next chapters.


    1. The previous 3 sections were adapted in part from Prof. C. David Sherrill’s A Brief Review of Elementary Quantum Chemistry Notes available here.

    This page titled 16.5: Wave-Particle Duality is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Roberto Peverati.

    • Was this article helpful?