Skip to main content
Chemistry LibreTexts

X-ray Spectroscopy

  • Page ID
    1866
  • X-ray Spectroscopy is a broadly used method to investigate atomic local structure as well as electronic states. Very generally, an X-ray strikes an atom and excites a core electron that can either be promoted to an unoccupied level, or ejected from the atom; both of these processes will create a core hole.

    • EXAFS: Theory
    • X-Rays
    • XANES: Application
      XANES, short for X-ray Absorption Near-Edge Structure, is a subset of X-ray Absorption Spectroscopy. The absorption edge corresponding to the liberation of a core electron from an element will exhibit several identifiable features which change depending on the chemical environment of the element being probed. The study and modelling of the characteristics of near-edge features helps answer questions about the oxidation state, coordination, and spin state of the probed element.
    • XANES - Theory
      X-ray Absorption Near Edge Structure (XANES), also known as Near edge X-ray Absorption Fine Structure (NEXAFS), is loosely defined as the analysis of the spectra obtained in X-ray absorption spectroscopy experiments. It is an element-specific and local bonding-sensitive spectroscopic analysis that determines the partial density of the empty states of a molecule.
    • XAS - Theory
      XAS, or X-ray Absorption Spectroscopy, is a broadly used method to investigate atomic local structure as well as electronic states. Very generally, an X-ray strikes an atom and excites a core electron that can either be promoted to an unoccupied level, or ejected from the atom. Both of these processes will create a core hole. If the electron dissociates, this produces an excited ion as well as photoelectron and is studied by X-ray Photoelectron Spectroscopy (XPS).