Skip to main content
Chemistry LibreTexts

X-Rays

  • Page ID
    35135
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
    Learning Objectives
    • Explain X-rays.
    • Interpret the symbols used in the Bragg equation.

    Like light, X-rays are electromagnetic radiation with very short wavelengths. Thus, X-ray photons have high energy, and they penetrate opaque material, but are absorbed by materials containing heavy elements.

    X-ray Diffraction

    When light passes through a series of equal-spaced pinholes, it gives rise to a pattern due to wave interference, and such a phenomenon is known as diffraction. X-rays have wavelengths comparable to the interatomic distances of crystals, and the interference patterns are developed by crystals when a beam of X-rays passes a crystal or a sample of crystal powder. The phenomena are known as diffraction of X-rays by crystals. More theory is given in Introduction to X-ray Diffraction.

    X-ray diffraction, discovered by von Laue in 1912, is a well established technique for material analysis. This link is the home page of Lambda Research, which provide various services using X-ray diffractions. For example:

    • Residual Stress Measurement
    • Qualitative Phase Analysis
    • Quantitative Phase Analysis
    • Precise Lattice Parameter Determination

    In 1913, the father and son team of W.H. Bragg and W.L. Bragg gave the equation for the interpretation of X-ray diffraction, and this is known as the Bragg equation.

    \(2\, d\, \sin \theta = n\, \lambda\)

    where d is the distance between crystallographic planes, \(\theta\) is half the angle of diffraction, n is an integer, and \(\lambda\) is the wavelength of the X-ray. A set of planes gives several diffraction beams; each is known as the nth order.

    Example 1

    The X-ray wavelength from a copper X-ray is 154.2 pm. If the inter-planar distance from \(\ce{NaCl}\) is 286 pm, what is the angle \(\theta\)?

    Solution

    \(\begin{align*}
    \sin \theta &= \dfrac{\lambda}{2 d}\\
    &= \dfrac{154}{2\times282}\\
    &= 0.273
    \end{align*}\)

    \(\theta = 15.8^\circ\)

    Example 2

    An X-ray of unknown wavelength is used. If the inter-planar distance from \(\ce{NaCl}\) is 286 pm, and the angle \(\theta\) is found to be 7.23°, what is \(\lambda\)?

    Solution

    \(\begin{align*}
    \lambda &= 2\, d\, \sin\theta\\
    &= 2\times282\times\sin(7.23^\circ)\\
    &= \mathrm{71\: pm}
    \end{align*}\)

    Example 3

    The X-ray of wavelength 71 pm is used. If the inter-planar distance from \(\ce{KI}\) is 353 pm, what is the angle \(\theta\) for the second order diffracted beam?

    Solution
    The calculation is shown below:

    \(\begin{align*}
    \sin \theta &= \dfrac{\lambda}{2 d}\\
    &= \dfrac{71}{2\times353}\\
    &= 0.100\\
    \theta &= 5.8^\circ
    \end{align*}\)

    These examples illustrate some example of the applications of X-ray diffraction for the study of solids.

    Exercise \(\PageIndex{1}\)

    If the wavelength is 150 pm and the interplanar distance d is 300 pm, what is the angle \(\theta\) in the Bragg equation, for n = 2?

    Answer

    30 degrees


    X-Rays is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Chung (Peter) Chieh.

    • Was this article helpful?