Aromaticity is a property of conjugated cycloalkenes in which the stabilization of the molecule is enhanced due to the ability of the electrons in the π orbitals to delocalize. This acts as a framework to create a planar molecule.
Aromaticity is a property of conjugated cycloalkenes in which the stabilization of the molecule is enhanced due to the ability of the electrons in the ππ orbitals to delocalize. This act as a framework to create a planar molecule.
Benzene rings may be joined together (fused) to give larger polycyclic aromatic compounds. A few examples are drawn below, together with the approved numbering scheme for substituted derivatives. The peripheral carbon atoms (numbered in all but the last three examples) are all bonded to hydrogen atoms. Unlike benzene, all the C-C bond lengths in these fused ring aromatics are not the same, and there is some localization of the pi-electrons.
A substituent on a benzene ring can effect the placement of additional substituents on that ring during Electrophilic Aromatic Substitution. How do we know where an additonal substituent will most likely be placed? The answer to this is through inductive and resonance effects. Inductive effects are directly correlated with electronegativity. Substituents can either be meta directing or ortho-para directing.
Polycyclic aromatics are compounds containing two or more fused aromatic rings. These fused benzene rings share two carbon atoms between them. These are also called polycyclic benoid or polycyclic aromatic hydrocarbons (PAHs). Many PAHs are carcinogenic and highly toxic.
Arenes are aromatic hydrocarbons. The term "aromatic" originally referred to the pleasant smells given off by arenes, but now implies a particular type of delocalized bonding (see below). The arenes you are likely to encounter at this level are based on benzene rings. The simplest of these arenes is benzene itself, C6H6. The next simplest arene is methylbenzene (common name: toluene), which has one of the hydrogen atoms attached to the ring replaced by a methyl group - C6H5CH3.