Skip to main content
Chemistry LibreTexts

Chapter 1: Atoms

  • Page ID
    354120
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Word cloud about Chemistry with energy and atoms being the biggest words.

    If, in some cataclysm, all of scientific knowledge were to be destroyed, and only one sentence passed on to the next generation of creatures, what statement would contain the most information in the fewest words? I believe it is the atomic hypothesis (or the atomic fact, or whatever you wish to call it) that all things are made of atoms—little particles that move around in perpetual motion, attracting each other when they are a little distance apart, but repelling on being squeezed into one another. In that one sentence, you will see, there is an enormous amount of information about the world, if just a little imagination and thinking are applied. – Nobel Laureate Richard Feynman, 1963

    Most of us are quite familiar with the core principle of atomic theory—the idea that matter is composed of atoms—because we have been told that this is so since childhood. But how many of us really, and we mean really believe it, use it in our day-to-day life, understand its implications, or know the reasons why it is assumed to be true? It seems so completely and totally impossible and improbable because we do not experience atoms directly and it is easy to go through life quite successfully, at least for the vast majority of us, without having to take atoms seriously. The average person’s brain is simply not wired to believe in the reality of things like atoms in a concrete and day-to-day way. Yet most scientists, and certainly most chemists, would agree that Feynman’s deceptively simple statement contains the essence of chemistry.

    Atomic theory is also critical for understanding a significant number of the underlying concepts of biology and physics, not to mention geology, astronomy, ecology, and engineering. How can one sentence contain so much information? Can we really explain such a vast and diverse set of scientific observations with so little to go on? In the next two chapters we will expand on Feynman’s sentence to see just what you can do with a little imagination and thinking. At the same time, it is worth remembering that the fact that atoms are so unreal from the perspective of our day-to-day experience means that the atomic theory poses a serious barrier to understanding modern chemistry. This is a barrier that can only be dealt with if you recognize it explicitly and try to address and adjust to it. You will be rewiring your brain in order to take atoms, and their implications, seriously. We are aware that this is not an easy task. It takes effort, and much of this effort will involve self-reflection, problem-solving, and question-answering. In an important sense, you do not have to believe in atoms, but you do have to understand them.

    Thumbnail: Spinning Buckminsterfullerene (\(\ce{C60}\)). (CC BY-SA 3.0; unported; Sponk).

    This page titled Chapter 1: Atoms is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Melanie M. Cooper & Michael W. Klymkowsky via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.