Skip to main content
Chemistry LibreTexts

5: Atoms and the Periodic Table

  • Page ID
    3501
  • [ "article:topic-guide", "Author tag:Lower", "authorname:lowers", "showtoc:no" ]

    Everything you need to know in a first-year college course about the principal concepts of quantum theory as applied to the atom, and how this determines the organization of the periodic table.

    • 5.0: Primer on Quantum Theory
      A quantum catechism: elementary introduction to quantum theory in the form of a question-and-answer "primer", emphasizing the concepts with a minimum of mathematics.
    • 5.1: Quanta - A New View of the World
      The fact is, however, that it is not only for real, but serves as the key that unlocks even some of the simplest aspects of modern Chemistry. Our goal in this lesson is to introduce you to this new reality, and to provide you with a conceptual understanding of it that will make Chemistry a more meaningful part of your own personal world.
    • 5.2: Light, Particles, and Waves
      Our intuitive view of the "real world" is one in which objects have definite masses, sizes, locations and velocities. Once we get down to the atomic level, this simple view begins to break down. It becomes totally useless when we move down to the subatomic level and consider the lightest of all chemically-significant particles, the electron. The chemical properties of a particular kind of atom depend on the arrangement and behavior of the electrons which make up almost the entire volume of the a
    • 5.3: The Bohr Atom
      Our goal in this unit is to help you understand how the arrangement of the periodic table of the elements must follow as a necessary consequence of the fundamental laws of the quantum behavior of matter. The modern theory of the atom makes full use of the wave-particle duality of matter. We will therefore present the theory in a semi-qualitative manner, emphasizing its results and their applications, rather than its derivation.
    • 5.4: The Quantum Atom
      The picture of the atom that Niels Bohr developed in 1913 served as the starting point for modern atomic theory, but it was not long before Bohr himself recognized that the advances in quantum theory that occurred through the 1920's required an even more revolutionary change in the way we view the electron as it exists in the atom. This lesson will attempt to show you this view— or at least the portion of it that can be appreciated without the aid of more than a small amount of mathematics.
    • 5.5: Atomic Electron Configurations
      According to the Pauli exclusion principle, no two electrons in the same atom can have the same set of quantum numbers (n,l,m,s). This limits the number of electrons in a given orbital to two (s = ±1), and it requires that atom containing more then two electrons must place them in standing wave patterns corresponding to higher principal quantum numbers n, which means that these electrons will be farther from the nucleus and less tightly bound by it.
    • 5.6: Periodic Properties of the Elements
      The periodic table in the form originally published by Dmitri Mendeleev in 1869 was an attempt to list the chemical elements in order of their atomic weights, while breaking the list into rows in such a way that elements having similar physical and chemical properties would be placed in each column. The shape and organization of the modern periodic table are direct consequences of the atomic electronic structure of the elements.
    • 5.7: Why Don't Electrons Fall into the Nucleus?
      The picture of electrons "orbiting" the nucleus like planets around the sun remains an enduring one, not only in popular images of the atom but also in the minds of many of us who know better. The proposal, first made in 1913, that the centrifugal force of the revolving electron just exactly balances the attractive force of the nucleus (in analogy with the centrifugal force of the moon in its orbit exactly counteracting the pull of the Earth's gravity) is a nice picture, but is simply untenable.

    Contributors