Skip to main content
Chemistry LibreTexts

6: Solution NMR in Structural Biology of Proteins

  • Page ID
    398260
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    • 6.1: 2D NMR Spectroscopy - Enhanced Spectral Resolution and Protein Backbone Conformation Reporters
      This Chapter introduces 2D NMR spectroscopy, which greatly enhances the resolving power of the spectra in comparison with generic 1D data. Specifically, 2D ¹⁵N-HSQC NMR spectra will be discussed in the context of analysis of protein samples in terms of assessing chemical and conformation states of the samples. In these applications, we will be relying on the NMR basics described above: 1-D NMR spectroscopy, Fourier transformation, concepts of sensitivity and resolution.
    • 6.2: Heteronuclear 3D NMR- Resonance Assignment in Proteins
      In the previous Chapter we described 2D NMR spectroscopy, which offers significantly greater spectral resolution than basic 1D spectra. In this Chapter we will show how the well-resolved 2D 15N-HSQC resonances can be assigned to specific residues and chemical groups within protein samples. As an example, we will consider a couple of complementary types of 3D NMR data: HNCACB and CBCA(CO)NH and their joint application for making heteronuclear NMR resonance assignment in proteins.  Such an assignm
    • 6.3: Analyzing Protein Dynamics, Conformational States and Function with NMR
      In the previous Chapter, we described the basics of the heteronuclear NMR resonance assignment process for proteins. Here we will discuss how certain types of NMR data can inform us about protein structural dynamics over various ranges of timescale. We will also consider briefly how NMR data helps elucidate biomolecular tertiary structure via ¹H-¹H NOE and ¹³C, ¹⁵N and ¹ⁱⁱH chemical shift values. Structure and dynamics of biomolecules offer powerful insight into their mechanisms of function.


    This page titled 6: Solution NMR in Structural Biology of Proteins is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Serge L. Smirnov and James McCarty.