AGENDA (Koski)
- Page ID
- 61287
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)The reading agenda is provided below. Please keep in mind that the assignments and readings are tentative after the current date.
Lecture 1: Unit I: Basics
- 1.1: Blackbody Radiation Cannot Be Explained Classically
- 1.2: Quantum Hypothesis used for Blackbody Radiation Law
- ASSIGNMENT: Homework 1 (due at start of class)
Lecture 2: Unit I: Basics
Lecture 3: Unit I: Basics
Lecture 4: Unit I: Basics
- 2.1: The One-Dimensional Wave Equation
- 2.2: The Method of Separation of Variables
- DISCUSSION: Worksheet 1 (first full week): Continuous Distributions
- ASSIGNMENT: Homework 2
Lecture 5: Unit I: Basics
Lecture 6: Unit I: Basics
Lecture 7: Unit I: Basics
- 3.4: Wave Functions Have a Probabilistic Interpretation
- 3.5: The Energy of a Particle in a Box Is Quantized
- 3.6: Wave Functions Must Be Normalized
- 3.7: The Average Momentum of a Particle in a Box is Zero
-
- DISCUSSION: Worksheet 2
- ASSIGNMENT: Homework 3
Lecture 8: Unit I: Basics
Lecture 9: Unit I: Basics
Lecture 10: Unit II: Model Systems
- 4.5: The Eigenfunctions of Operators are Orthogonal (Hermitian Operators)
- 5.1: A Harmonic Oscillator Obeys Hooke's Law
- 5.4: The Harmonic Oscillator Energy Levels
- 5.6: The Harmonic-Oscillator Wavefunctions Involve Hermite Polynomials
- DISCUSSION: Worksheet 3A
- DISCUSSION: Worksheet 3B
- ASSIGNMENT: Homework 4
Midterm I: 10/18/24
- Take-home. Covers all material until this point.
Lecture 11: Unit II: Model Systems
Lecture 12: Unit II: Model Systems
- 5.7. Hermite Polynomials are Even or Odd
- 5.5. The Harmonic Oscillator and IR Spectra
- DISCUSSION: Worksheet 4A
- DISCUSSION: Worksheet 4B
- ASSIGNMENT: Homework 5
Lecture 13: Unit II: Model Systems
Lecture 14: Unit III: Atoms
- 6.1. The Schrodinger Equation for the Hydrogen Atom Can Be Solved Exactly
- 6.2. The Wave Functions of a Rigid Rotator Are Called Spherical Harmonics
- DISCUSSION: Worksheet 5
- ASSIGNMENT: Homework 6A (due 11/11 )
- ASSIGNMENT: Homework 6B: ab initio Calculations
Lecture 15: Unit III: Atom
Lecture 16: Unit III: Atoms
Lecture 17: Unit III: Atoms
Lecture 18: Unit III: Atoms
No Lecture: 11/11/24 (Veterans' Day)
- DISCUSSION: Worksheet 6A
- DISCUSSION: Worksheet 6B
- ASSIGNMENT: Homework 7A
- ASSIGNMENT: Homework 7B: ab initio Calculations
Midterm: 11/13/24
- Take-home. Covers all material until this point.
Lecture 19: Unit III: Atoms
- 7.3. Trial Functions Can Be Combinations of Functions
- 7.4. Perturbation Theory Expresses the Solution to One Problem in Terms of Another Problem Solved Previously
- DISCUSSION: Worksheet 7A
- DISCUSSION: Worksheet 7B
- ASSIGNMENT: Homework 8A
Lecture 20: Unit III: Atoms
- 7.5: Perturbation Theory Expresses the Solutions in Terms of Solved Problems
- 8.2: Approximations of the Helium Atom
Lecture 21: Unit III: Atoms
Lecture 23: Unit III: Atoms
Lecture 24: Unit IV: Diatomic Molecules
Thanksgiving: 11/27-29/24
- No Class. Thanksgiving.
Lecture 25:Unit IV: Diatomic Molecules
Lecture 26: Unit IV: Diatomic Molecules
- 9.4: Chemical Bond Stability
- 9.5: Bonding and Antibonding Orbitals
- 9.6: Molecular-Orbital Bonding in H2
- 9.8: The Diatomic Helium Molecule
- DISCUSSION: Worksheet 9A
- DISCUSSION: Worksheet 9B
- DISCUSSION: Worksheet 10A
- DISCUSSION: Worksheet 10B
Lecture 27: Unit IV: Diatomic Molecules
Final Exam:
- Exam covers lectures 1 through 27