Skip to main content
Chemistry LibreTexts

8.2: Redox and Electron Transfer

  • Page ID
    207709
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)


    Transition metal ions are unique tools for biology. One of the properties that makes them imperative to biochemical processes is their ability to adopt multiple oxidation states under the conditions found in cells: near neutral pH, ambient temperatures and pressures, and in aqueous solution. Biology leverages the ability of transition metals to accept and donate electrons to accomplish the reduction and oxidation (redox) chemistry and the the electron transfers that are necessary for essential biological processes.

    Curated or created by Kathryn Haas

    II. Electron-transfer Rates

    V. References

    1. R. C. Prince, Trends Biochem. Sci. 13 (1988), 286-288.
    2. R. C. Prince and G. N. George, Trends Biochem. Sci. 15 (1990), 170-172.
    3. E. T. Adman, Biochim. Biophys. Acta 549 (1979), 107-144.
    4. H. B. Gray and B. G. Malmström, Comments Inorg. Chem. 2 (1983), 203-209.
    5. T. E. Meyer and M. A. Cusanovich, Biochim. Biophys. Acta 975 (1989), 1-28.
    6. R. P. Simondsen and G. Tollin, Mol. Cellular Biochem. 33 (1980), 13-24.
    7. C. T. W. Moonen and F. Müller, Biochemistry 21 (1982), 408-414.
    8. H. B. Gray and E. I. Solomon, in T. G. Spiro, ed., Copper Proteins, Wiley, 1981, pp. 1-39.
    9. E. T. Adman, in P. Harrison, ed., Metalloproteins, Macmillan, 1985, Part I, pp. 1-42.
    10. O. Farver and I. Pecht, in R. Lontie, ed., Copper Proteins and Copper Enzymes, CRC Press, 1984, vol. I, pp. 183-214.
    11. G. E. Norris, B. F. Anderson, and E. N. Baker, J. Am. Chem. Soc. 108 (1986), 2784-2785.
    12. E. W. Ainscough et al., Biochemistry 26 (1987), 71-82.
    13. W. Lovenberg, ed., Iron-Sulfur Proteins, Academic Press, 1973-1977, 3 vols.
    14. T. G. Spiro, ed., Iron-Sulfur Proteins, Wiley, 1982.
    15. K. Fukuyama et al., Nature 286 (1980), 522-524.
    16. J. Rawlings, O. Siiman, and H. B. Gray, Proc. Natl. Acad. Sci. USA 71 (1974), 125-127.
    17. C. W. Carter et al., Proc. Natl. Acad. Sci. USA 69 (1972), 3526-3529.
    18. G. R. Moore, G. W. Pettigrew, and N. K. Rogers, Proc. Natl. Acad. Sci. USA 83 (1986), 4998-4999.
    19. T. E. Meyer and M. D. Kamen, Adv. Protein Chem. 35 (1982), 105-212.
    20. G. R. Moore and G. W. Pettigrew, Cytochromes c, Springer-Verlag, 1984.
    21. R. E. Dickerson, Sci. Amer. 242 (1980), 137-153.
    22. F. S. Mathews, Prog. Biophys. Mol. Biol. 45 (1985), 1-56.
    23. R. P. Ambler, in A. B. Robinson and N. D. Kaplan, eds., From Cyclotrons to Cytochromes, Academic Press, 1980, pp. 263-279.
    24. K. Kimura et al., J. Chem. Phys. 70 (1979), 3317-3323.
    25. D. Keilin, Proc. Roy. Soc. (London) 898 (1925), 312-339.
    26. Y. Hatefi, Annu. Rev. Biochem. 54 (1985), 1015-1069.
    27. B. P. S. N. Dixit and J. M. Vanderkooi, Curr. Top. Bioenergetics 13 (1984), 159-202.
    28. C. W. Jones, Biological Energy Conservation, Chapman and Hall, 2d ed., 1981.
    29. C. R. Hackenbrock, Trends Biochem. Sci. 6 (1981), 151-154.
    30. S. Gupte et al., Proc. Natl. Acad. Sci. USA 81 (1984), 2606-2610.
    31. R. K. Clayton, Photosynthesis: Physical Mechanisms and Chemical Patterns, Cambridge Univ. Press, 1980.
    32. F. K. Fong, ed., Light Reaction Path of Photosynthesis, Springer-Verlag, 1982.
    33. R. K. Clayton and W. R. Sistrom, eds., The Photosynthetic Bacteria, Plenum, 1978.
    34. Photosynthesis, Vol. I: Energy Conversion by Plants and Bacteria, Academic Press, 1982.
    35. B. W. Matthews and R. E. Fenna, Acc. Chem. Res. 13 (1980), 309-317.
    36. J. Deisenhofer et al., J. Mol. Biol. 180 (1984), 385-398.
    37. R. Hille and V. Massey, in T. G. Spiro, ed., Molybdenum Enzymes, Wiley, 1985, pp. 443-518.
    38. R. Hille, W. R. Hagen, and W. R. Dunham, J. Biol. Chem. 260 (1985), 10569-10575.
    39. A. Bhattacharyya et al., Biochemistry 22 (1983), 5270-5279.
    40. J. Stubbe, Adv. Enzymology 63 (1990), 349-419.
    41. P. Nordlund, B.-M. Sjöberg, and H. Eklund, Nature 345 (1990), 593-598.
    42. R. E. White and M. J. Coon, Annu. Rev. Biochem. 49 (1980), 315-356.
    43. S. G. Sligar and R. I. Murray, in P. R. Ortiz de Montellano, ed., Cytochrome P-450: Structure, Mechanism, and Biochemistry, Plenum, 1986, pp. 429-503.
    44. C. B. Brewer and J. A. Peterson, J. Biol. Chem. 263 (1988), 791-798.
    45. F. A. Annstrong, H. A. O. Hill, and N. J. Walton, Quart. Rev. Biophys. 18 (1986), 261-322.
    46. G. D. Hitchens, Trends Biochem. Sci. 14 (1989), 152-155.
    47. F. A. Annstrong, Structure and Bonding 72 (1989), 137-221; A. Heller, J. Phys. Chem. 96 (1992), 3579-3587.
    48. H. A. O. Hill et al., J. Chem. Soc. Chem. Commun. (1985), 1469-1471.
    49. H. Taube, Angew. Chem. Int. Ed. Engl. 23 (1984), 329-334.
    50. R. D. Cannon, Electron-Transfer Reactions, Butterworths, 1980.
    51. Prog. Inorg. Chem. 30 (1983).
    52. S. L. Mayo et al., Science 233 (1986), 948-952.
    53. A. G. Sykes, Chem. Brit. 24 (1988), 551-554.
    54. M. Faraggi, M. R. De Felippis, and M. H. Klapper, J. Am. Chem. Soc. 111 (1989), 5141-5145.
    55. G. McLendon, Acc. Chem. Res. 21 (1988), 160-167.
    56. O. Farver and I. Pecht, Proc. Natl. Acad. Sci. USA 86 (1989), 6968-6972.
    57. S. E. Peterson-Kennedy et al., Coord. Chem. Rev. 64 (1985), 125-133.
    58. D. E. Richardson, Comments Inorg. Chem. 3 (1985), 367-384.
    59. S. Dahlin, B. Reinhammar, and M. T. Wilson, Biochem. J. 218 (1984), 609-614.
    60. R. A. Marcus, Annu. Rev. Phys. Chem. 15 (1964), 155-196.
    61. W. L. Reynolds and R. W. Lumry, Mechanisms of Electron Transfer, Ronald Press, 1966.
    62. J. Ulstrup, Charge Transfer Process in Condensed Media, Springer-Verlag, 1979.
    63. N. Sutin, Acc. Chem. Res. 15 (1982), 275-282.
    64. M. D. Newton and N. Sutin, Annu. Rev. Phys. Chem. 35 (1984), 437-480.
    65. P. Bertrand, Biochimie 68 (1986), 619-628.
    66. J. V. McArdle et al., J. Am. Chem. Soc. 99 (1977), 2483-2489.
    67. S. Wherland et al., J. Am. Chem. Soc. 97 (1975), 5260-5262.
    68. A. G. Mauk, R. A. Scott, and H. B. Gray, J. Am. Chem. Soc. 102 (1980), 4360-4363.
    69. S. Wherland and I. Pecht, Biochemistry 17 (1978), 2585-2591.
    70. B. S. Brunschwig and N. Sutin, Comments Inorg. Chem. 6 (1987), 209-235.
    71. N. Sutin, in J. J. Zuckerman, ed., Inorganic Reactions and Methods, VCH Publishers, 1986, XV, 23- 24.
    72. R. A. Marcus and N. Sutin, Biochim. Biophys. Acta 811 (1985), 265-322.
    73. J. R. Winkler and H. B. Gray, Chem. Rev. 92 (1992), 369-379.
    74. H. B. Gray and J. R. Winkler, Pure Appl. Chem. 64 (1992), 1257-1262.
    75. J. Jortner and M. Bixon, J. Chem. Phys. 88 (1988), 167-170.
    76. J. J. Hopfield, Proc. Natl. Acad. Sci. USA 71 (1974), 3640-3644.
    77. G. L. Closs and J. R. Miller, Science 240 (1988), 440-447.
    78. H. Oevering et al., J. Am. Chem. Soc. 109 (1987), 3258-3269.
    79. C. C. Moser et al., Nature 355 (1992), 796-802.
    80. C. C. Moser and P. L. Dutton, Biochim. Biophys. Acta 1101 (1992), 171-176.
    81. H. E. M. Christensen et al., Inorg. Chem. 29 (1990), 2808-2816.
    82. M. A. Ratner, J. Phys. Chem. 94 (1990), 4877-4883.
    83. S. Larsson, Chem. Scripta 28A (1988), 15-20.
    84. D. N. Beratan and J. N. Onuchic, Photosynthesis Res. 22 (1989), 173-186.
    85. D. N. Beratan et al., J. Am. Chem. Soc. 112 (1990), 7915-7921.
    86. J. N. Onuchic et al., Annu. Rev. Biophys. Biomol. Struct. 21 (1992), 349-377.
    87. A. G. Sykes, Chem. Soc. Rev. 14 (1985), 283-315.
    88. H. C. Freeman, in J. L. Laurent, ed., Coordination Chemistry-21, Pergamon Press, 1981, pp. 29-51.
    89. D. Boulter et al., in D. H. Northcote, ed., Plant Biochemistry, Univ. Park Press, 1977, II, 1-40.
    90. J. M. Guss et al., J. Mol. Biol. 192 (1986), 361-387.
    91. J. McGinnis et al., Inorg. Chem. 27 (1988), 2306-2312.
    92. O. Farver and I. Pecht, Proc. Natl. Acad. Sci. USA 78 (1981), 4190-4193.
    93. O. Farver, Y. Shahak, and I. Pecht, Biochemistry 21 (1982), 1885-1890.
    94. B. S. Brunschwig et al., Inorg. Chem. 24 (1985), 3743-3749.
    95. S. K. Chapman et al., in M. Chisholm, ed., Inorganic Chemistry: Toward the Twenty-first Century, American Chemical Society, 1983, pp. 177-197.
    96. H. B. Gray, Chem. Soc. Rev. 15 (1986), 17-30.
    97. D. W. Conrad and R. A. Scott, J. Am. Chem. Soc. 111 (1989), 3461-3463.
    98. L. P. Pan et al., Biochemistry 27 (1988), 7180-7184.
    99. C. M. Lieber, J. L. Karas, and H. B. Gray, J. Am. Chem. Soc. 109 (1987), 3778-3779.
    100. J. L. Karas, C. M. Lieber, and H. B. Gray, J. Am. Chem. Soc. 110 (1988), 599-600.
    101. J. A. Cowan et al., Ann. N.Y. Acad. Sci. 550 (1988), 68-84.
    102. T. Takano, J. Mol. Biol. 110 (1977), 537-568 and 559-584.
    103. K. Tsukahara, J. Am. Chem. Soc. 111 (1989), 2040-2044.
    104. E. T. Kaiser and D. S. Lawrence, Science 226 (1984), 505-511.
    105. R. E. Offord, Protein Eng. 1 (1987), 151-157.
    106. E. T. Kaiser, Angew. Chem. Int. Ed. Engl. 27 (1988), 913-922.
    107. T. Kokubo, S. Sassa, and E. T. Kaiser, J. Am. Chem. Soc. 109 (1987), 606-607; J. Kuriyan et al., J. Am. Chem. Soc. 110 (1988), 6261-6263.
    108. C. Chothia and J. Janin, Nature 256 (1975), 705-708.
    109. A. G. Amit et al., Science 233 (1986), 747-753.
    110. H. M. Geysen et al., Science 235 (1987), 1184-1190.
    111. F. R. Salemme, J. Mol. Biol. 102 (1976), 563-568.
    112. J. J. Wendoloski et al., Science 238 (1987), 794-797.
    113. G. L. McLendon et al., J. Am. Chem. Soc. 107 (1985), 739-740.
    114. M. R. Mauk, L. S. Reid, and A. G. Mauk, Biochemistry 21 (1982),1843-1846.
    115. J. A. Komblatt et al., J. Am. Chem. Soc. 110 (1988), 5909-5911.
    116. S. Ng et al., Biochemistry 16 (1977), 4975-4978.
    117. M. R. Mauk et al., Biochemistry 25 (1986), 7085-7091.
    118. P. W. Holloway and H. H. Mantsch, Biochemistry 27 (1988), 7991-7993.
    119. A. M. Burch et al., Science 247 (1990), 831-833; K. K. Rodgers and S. G. Sligar, J. Mol. Biol. 221 (1991), 1453-1460.
    120. J. Stonehuemer, J. B. Williams, and F. Millett, Biochemistry 18 (1979), 5422-5427; L. D. Eltis et al., Biochemistry 30 (1991), 3663-3674.
    121. K. T. Conklin and G. McLendon, Inorg. Chem. 25 (1986), 4806-4807.
    122. N. Liang et al., Science 240 (1988) 311-313.
    123. J. L. McGourty et al., Biochemistry 26 (1987), 8302-8312.
    124. S. E. Peterson-Kennedy et al., J. Am. Chem. Soc. 108 (1986), 1739-1746.
    125. D. J. Gingrich et al., J. Am. Chem. Soc. 109 (1987), 7533-7534.
    126. J. Jortner, J. Chem. Phys. 64 (1976), 4860-4867.
    127. P. Siders and R. A. Marcus, J. Am. Chem. Soc. 103 (1981), 741-747.
    128. F. R. Salemme, Annu. Rev. Biochem. 46 (1977), 299-329.
    129. S. Ferguson-Miller, D. L. Brautigan, and E. Margoliash, in D. Dolphin, ed., The Porphyrins, Academic Press, 1979, VII, 149-240.
    130. R. Timkovich, in Reference 129, pp. 241-294.
    131. G. Williams, G. R. Moore, and R. J. P. Williams, Comments Inorg. Chem. 4 (1985), 55-98.
    132. G. R. Moore, C. G. S. Eley, and G. Williams, Adv. Inorg. and Bioinorg. Mech. 3 (1984), 1-96.
    133. E. Margoliash and H. R. Bosshard, Trends Biochem. Sci. 8 (1983), 316-320.
    134. T. Takano and R. E. Dickerson, J. Mol. Biol. 153 (1981), 79-94 and 95-115.
    135. G. Williams et al., J. Mol. Biol. 183 (1985), 447-460.
    136. Y. Feng, H. Roder, and S. W. Englander, Biochemistry 29 (1990), 3494-3504.
    137. Y. Feng and S. W. Englander, Biochemistry 29 (1990), 3505-3509.
    138. F. K. Rodkey and E. G. Ball, J. Biol. Chem. 182 (1950), 17-20.
    139. J. B. Wooten et al., Biochemistry 20 (1981), 5394-5402.
    140. G. R. Moore and R. J. P. Williams, Eur. J. Biochem. 103 (1980), 513-521.
    141. I. Pecht and M. Faraggi, Proc. Natl. Acad. Sci. USA 69 (1972), 902-906.
    142. R. J. Kassner, Proc. Natl. Acad. Sci. USA 69 (1972), 2263-2267.
    143. A. K. Churg and A. Warshel, Biochemistry 25 (1986), 1675-1681.
    144. A. L. Raphael and H. B. Gray, Proteins 6 (1989), 338-340.
    145. C. J. A. Wallace et al., J. Biol. Chem. 264 (1989), 15199-15209.
    146. H. A. Harbury et al., Proc. Natl. Acad. Sci. USA 54 (1965), 1658-1664.
    147. T. N. Sorrell, P. K. Martin, and E. F. Bowden, J. Am. Chem. Soc. 111 (1989), 766-767.
    148. R. L. Cutler et al., Biochemistry 28 (1989), 3188-3197.
    149. A. L. Raphael and H. B. Gray, J. Am. Chem. Soc. 113 (1991), 1038-1040.
    150. J. Butler et al., J. Am. Chem. Soc. 103 (1981), 469-471.
    151. G. D. Armstrong et al., Biochemistry 25 (1986), 6947-6951.
    152. W. H. Koppenol and E. Margoliash, J. Biol. Chem. 257 (1982), 4426-4437.
    153. P. Nicholls, Biochim. Biophys. Acta 346 (1974), 261-310.
    154. P. C. Weber and G. Tollin, J. Biol. Chem. 260 (1985), 5568-5573.
    155. (a) T. L. Poulos and J. Kraut, J. Biol. Chem. 255 (1980), 10322-10330; (b) H. Pelletier and J. Kraut, Science 258 (1992), 1748-1755; D. N. Beratan et al., Science 258 (1992), 1740-1741.
    156. S. H. Northrup et al., J. Am. Chem. Soc. 108 (1986), 8162-8170.
    157. B. W. König et al., FEBS Lett. 111 (1980), 395-398.
    158. K. S. Schmitz and J. M. Schurr, J. Phys. Chem. 76 (1972), 534-545.
    159. B. Michel et al., Biochemistry 28 (1989), 456-462.
    160. A. K. Churg et al., J. Phys. Chem. 87 (1983), 1683-1694.
    161. I.-J. Chang, H. B. Gray, and J. R. Winkler, J. Am. Chem. Soc. 113 (1991), 7056-7057.
    162. D. S. Wuttke et al., Science 256 (1992), 1007-1009.
    163. D. S. Wuttke et aI., Biochim. Biophys. Acta 1101 (1992), 168-170.
    164. A. Kuki, Structure and Bonding 75 (1991), 49-83.
    165. P. Siddarth and R. A. Marcus, J. Phys. Chem. 94 (1990), 8430-8434; 96 (1992), 3213-3217.
    166. A. Brao and S. Larsson, J. Phys. Chem. 95 (1991), 4925-4928.
    167. C. Liang and M. D. Newton, J. Phys. Chem. 96 (1992), 2855-2866.
    168. H. Sigel and A. Sigel, eds., Metal Ions in Biological Systems, Dekker, 1991, vol 27.
    169. D. N. Beratan, J. N. Betts, and J. N. Onuchic, J. Phys. Chem. 96 (1992), 2852-2855; Science 252 (1991), 1285-1288.
    170. J. N. Betts, D. N. Beratan, and J. N. Onuchic, J. Am. Chem. Soc. 114 (1992), 4043-4046.
    171. J. R. Norris and M. Schiffer, Chem. Eng. News 68 (July 30, 1990), 22-35.
    172. G. Feher et al., Nature 339 (1989), 111-116.
    173. J. Deisenhofer and H. Michel, Annu. Rev. Biophys. Biophys. Chem 20 (1991), 247-266.
    174. S. Kartha, R. Das, and J. R. Norris, Metal Ions Biol. Syst. 27 (1991), 323-359.
    175. M. R. Wasielewski, Metal Ions BioI. Syst. 27 (1991), 361-430.
    176. S. G. Boxer, Annu. Rev. Biophys. Biophys. Chem. 19 (1990), 267-299.
    177. J. P. Allen et al., Proc. Natl. Acad. Sci. USA 84 (1987), 5730-5734 and 6162-6166.
    178. T. O. Yeates et al., Proc. Natl. Acad. Sci. USA 84 (1987), 6438-6442.
    179. R. J. Debus, G. Feher, and M. Y. Okamura, Biochemistry 25 (1986), 2276-2287.
    180. S. G. Boxer et aI., J. Phys. Chem. 93 (1989), 8280-8294.
    181. C.-K. Chan et al., Proc. Natl. Acad. Sci. USA 88 (1991), 11202-11206.
    182. M. Nonella and K. Schulten, J. Phys. Chem. 95 (1991), 2059-2067.
    183. K. Schulten and M. Tesch, Chem. Phys. 158 (1991), 421-446.
    184. The authors thank Deborah Wuttke for invaluable assistance with the preparation of the final draft of the manuscript and for many helpful discussions. We acknowledge the National Science Foundation, the National Institutes of Health, and the Arnold and Mabel Beckman Foundation for support of our work on biological electron-transfer reactions.

    Contributors and Attributions

    • Harry B. Gray (California Institute of Technology, Beckman Institute)
    • Walther R. Ellis, Jr. (University of Utah, Department of Chemistry)

    8.2: Redox and Electron Transfer is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?