6.3: Manipulating Equilibrium Constants
- Page ID
- 127249
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)We will take advantage of two useful relationships when we work with equilibrium constants. First, if we reverse a reaction’s direction, the equilibrium constant for the new reaction is the inverse of that for the original reaction. For example, the equilibrium constant for the reaction
\[\mathrm{A}+2 \mathrm{B}\rightleftharpoons \mathrm{AB}_{2} \quad \quad K_{1}=\frac{\left[\mathrm{AB}_{2}\right]}{[\mathrm{A}][\mathrm{B}]^{2}} \nonumber\]
is the inverse of that for the reaction
\[\mathrm{AB}_{2}\rightleftharpoons \mathrm{A}+2 \mathrm{B} \quad \quad K_{2}=\left(K_{1}\right)^{-1}=\frac{[\mathrm{A}][\mathrm{B}]^{2}}{\left[\mathrm{AB}_{2}\right]} \nonumber\]
Second, if we add together two reactions to form a new reaction, the equilibrium constant for the new reaction is the product of the equilibrium constants for the original reactions.
\[A+C\rightleftharpoons A C \quad \quad K_{3}=\frac{[A C]}{[A][C]} \nonumber\]
\[\mathrm{AC}+\mathrm{C}\rightleftharpoons\mathrm{AC}_{2} \quad \quad K_{4}=\frac{\left[\mathrm{AC}_{2}\right]}{[\mathrm{AC}][\mathrm{C}]} \nonumber\]
\[\mathrm{A}+2 \mathrm{C}\rightleftharpoons \mathrm{AC}_{2} \quad \quad K_{5}=K_{3} \times K_{4}=\frac{[\mathrm{AC}]}{[\mathrm{A}][\mathrm{C}]} \times \frac{\left[\mathrm{AC}_{2}\right]}{[\mathrm{AC}][\mathrm{C}]}=\frac{\left[\mathrm{AC}_{2}\right]}{[\mathrm{A}][\mathrm{C}]^{2}} \nonumber\]
Calculate the equilibrium constant for the reaction
\[2 \mathrm{A}+\mathrm{B}\rightleftharpoons \mathrm{C}+3 \mathrm{D} \nonumber\]
given the following information
\[\begin{array}{ll}{\text{Rxn} \ 1 : A+B\rightleftharpoons D} & {K_{1}=0.40} \\ {\text{Rxn} \ 2 : A+E\rightleftharpoons C+D+F} & {K_{2}=0.10} \\ {\text{Rxn} \ 3 : C+E\rightleftharpoons B} & {K_{3}=2.0} \\ {\text{Rxn} \ 4 : F+C\rightleftharpoons D+B} & {K_{4}=5.0}\end{array} \nonumber\]
Solution
The overall reaction is equivalent to
\[\text{Rxn} \ 1+\text{Rxn} \ 2-\text{Rxn} \ 3+\text{Rxn} \ 4 \nonumber\]
Subtracting a reaction is equivalent to adding the reverse reaction; thus, the overall equilibrium constant is
\[K=\frac{K_{1} \times K_{2} \times K_{4}}{K_{3}}=\frac{0.40 \times 0.10 \times 5.0}{2.0}=0.10 \nonumber\]
Calculate the equilibrium constant for the reaction
\[C+D+F \rightleftharpoons 2 A+3 B \nonumber\]
using the equilibrium constants from Example 6.3.1 .
- Answer
-
The overall reaction is equivalent to
\[\operatorname{Rxn} 4-2 \times \operatorname{Rxn} 1 \nonumber\]
Subtracting a reaction is equivalent to adding the reverse reaction; thus, the overall equilibrium constant is
\[K=\frac{K_{4}}{\left(K_{1}\right)^{2}}=\frac{(5.0)}{(0.40)^{2}}=31.25 \approx 31 \nonumber\]