Skip to main content
Chemistry LibreTexts

6.3: Manipulating Equilibrium Constants

  • Page ID
    127249
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    We will take advantage of two useful relationships when we work with equilibrium constants. First, if we reverse a reaction’s direction, the equilibrium constant for the new reaction is the inverse of that for the original reaction. For example, the equilibrium constant for the reaction

    \[\mathrm{A}+2 \mathrm{B}\rightleftharpoons \mathrm{AB}_{2} \quad \quad K_{1}=\frac{\left[\mathrm{AB}_{2}\right]}{[\mathrm{A}][\mathrm{B}]^{2}} \nonumber\]

    is the inverse of that for the reaction

    \[\mathrm{AB}_{2}\rightleftharpoons \mathrm{A}+2 \mathrm{B} \quad \quad K_{2}=\left(K_{1}\right)^{-1}=\frac{[\mathrm{A}][\mathrm{B}]^{2}}{\left[\mathrm{AB}_{2}\right]} \nonumber\]

    Second, if we add together two reactions to form a new reaction, the equilibrium constant for the new reaction is the product of the equilibrium constants for the original reactions.

    \[A+C\rightleftharpoons A C \quad \quad K_{3}=\frac{[A C]}{[A][C]} \nonumber\]

    \[\mathrm{AC}+\mathrm{C}\rightleftharpoons\mathrm{AC}_{2} \quad \quad K_{4}=\frac{\left[\mathrm{AC}_{2}\right]}{[\mathrm{AC}][\mathrm{C}]} \nonumber\]

    \[\mathrm{A}+2 \mathrm{C}\rightleftharpoons \mathrm{AC}_{2} \quad \quad K_{5}=K_{3} \times K_{4}=\frac{[\mathrm{AC}]}{[\mathrm{A}][\mathrm{C}]} \times \frac{\left[\mathrm{AC}_{2}\right]}{[\mathrm{AC}][\mathrm{C}]}=\frac{\left[\mathrm{AC}_{2}\right]}{[\mathrm{A}][\mathrm{C}]^{2}} \nonumber\]

    Example 6.3.1

    Calculate the equilibrium constant for the reaction

    \[2 \mathrm{A}+\mathrm{B}\rightleftharpoons \mathrm{C}+3 \mathrm{D} \nonumber\]

    given the following information

    \[\begin{array}{ll}{\text{Rxn} \ 1 : A+B\rightleftharpoons D} & {K_{1}=0.40} \\ {\text{Rxn} \ 2 : A+E\rightleftharpoons C+D+F} & {K_{2}=0.10} \\ {\text{Rxn} \ 3 : C+E\rightleftharpoons B} & {K_{3}=2.0} \\ {\text{Rxn} \ 4 : F+C\rightleftharpoons D+B} & {K_{4}=5.0}\end{array} \nonumber\]

    Solution

    The overall reaction is equivalent to

    \[\text{Rxn} \ 1+\text{Rxn} \ 2-\text{Rxn} \ 3+\text{Rxn} \ 4 \nonumber\]

    Subtracting a reaction is equivalent to adding the reverse reaction; thus, the overall equilibrium constant is

    \[K=\frac{K_{1} \times K_{2} \times K_{4}}{K_{3}}=\frac{0.40 \times 0.10 \times 5.0}{2.0}=0.10 \nonumber\]

    Exercise 6.3.1

    Calculate the equilibrium constant for the reaction

    \[C+D+F \rightleftharpoons 2 A+3 B \nonumber\]

    using the equilibrium constants from Example 6.3.1 .

    Answer

    The overall reaction is equivalent to

    \[\operatorname{Rxn} 4-2 \times \operatorname{Rxn} 1 \nonumber\]

    Subtracting a reaction is equivalent to adding the reverse reaction; thus, the overall equilibrium constant is

    \[K=\frac{K_{4}}{\left(K_{1}\right)^{2}}=\frac{(5.0)}{(0.40)^{2}}=31.25 \approx 31 \nonumber\]


    This page titled 6.3: Manipulating Equilibrium Constants is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David Harvey.

    • Was this article helpful?