13.1: Tables
- Page ID
- 545601
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)- 13.1.2: Fundamental Physical Constants
- This page provides a comprehensive list of fundamental physical constants crucial for scientific calculations, including the atomic mass unit, Avogadro’s number, Boltzmann’s constant, and the speed of light. It also details constants associated with electrons, protons, and neutrons, alongside the gas constant, Faraday’s constant, and the Rydberg constant.
- 13.1.3: Water Properties
- This page details the properties of water across different temperatures, highlighting density, vapor pressure, and the water dissociation constant. It notes that water's density is highest at 4°C and that vapor pressure rises with temperature. The page also includes specific heat capacities for liquid, solid, and gas states, as well as enthalpy changes during melting and boiling, and constants related to freezing and boiling point variations.
- 13.1.4: Composition of Commercial Acids and Bases
- This page provides a detailed table of commercial acids and bases, outlining their density, percentage by mass, and molarity. It includes key substances such as acetic acid, aqueous ammonia, and various strong acids and bases. Footnotes emphasize the common availability of these substances as aqueous solutions and the importance of specific gravity for labeling purposes.
- 13.1.5: Standard Thermodynamic Properties for Selected Substances
- This page presents comprehensive thermodynamic properties for a wide range of substances, including metals, non-metals, and various compounds like oxides and halides. Key data provided includes standard enthalpy of formation, Gibbs free energy of formation, and entropy at 298 K.
- 13.1.6: Ionization Constants of Weak Acids
- This page presents a list of weak acids with their chemical formulas and ionization constants (Ka) at 25 °C, including acetic, arsenic, boric, and carbonic acids. It details the Ka values that reflect the strength of these acids in aqueous solutions and discusses the multiple ionization stages of some polyprotic acids, enhancing the understanding of their dissociation characteristics and behavior in chemical reactions.
- 13.1.7: Ionization Constants of Weak Bases
- This page details the ionization constants (Kb) of various weak bases at 25 °C, demonstrating their relative strengths. Among the bases, ammonia has a Kb of 1.8 × 10−5, while dimethylamine (5.9 × 10−4) and methylamine (4.4 × 10−4) are stronger. Trimethylamine has a Kb of 6.3 × 10−5, and phenylamine (aniline) is the weakest with a Kb of 4.3 × 10−10.
- 13.1.8: Solubility Products
- This page presents the solubility products (Ksp) of various metals at 25 °C, showcasing a wide range of solubility levels from very low (e.g., Bi2S3) to moderate (e.g., Ba(OH)2·8H2O). It includes metals such as aluminum, barium, and zinc, among others, providing insight into their solubility in water.
- 13.1.9: Formation Constants for Complex Ions
- This page provides a table of formation constants (Kf) for complex ions formed by metal ions and ligands, with examples including aluminum fluoride, cadmium complexes, and cobalt and iron complexes. It highlights the varying stability of these complexes, with formation constants from 10^2 to over 10^43, essential for understanding coordination chemistry and metal ion behavior in solution.
- 13.1.10: Standard Electrode (Half-Cell) Potentials
- This page provides a comprehensive overview of standard electrode potentials for various half-reactions, detailing the transformation of oxidized species to their reduced forms. It includes specific examples from metals and ions, indicating their associated E° values in volts. The data reveals the relative strengths of these species as oxidizing agents, critical for predicting the spontaneity of redox reactions and understanding electrochemistry principles.
- 13.1.11: Half-Lives for Several Radioactive Isotopes
- This page provides a detailed table of radioactive isotopes, showcasing their half-lives and emission types including beta, alpha, electron capture, and spontaneous fission. It emphasizes the wide variability in decay durations and the various emission processes, reflecting the diversity of radioactive decay behavior among different isotopes.

