Search
- https://chem.libretexts.org/Bookshelves/General_Chemistry/Chemistry_2e_(OpenStax)/17%3A_Electrochemistry/17.04%3A_Potential_Free_Energy_and_EquilibriumElectrical work is the negative of the product of the total charge (Q) and the cell potential (Ecell). The total charge can be calculated as the number of moles of electrons (n) times the Faraday cons...Electrical work is the negative of the product of the total charge (Q) and the cell potential (Ecell). The total charge can be calculated as the number of moles of electrons (n) times the Faraday constant (F = 96,485 C/mol e−). Electrical work is the maximum work that the system can produce and so is equal to the change in free energy. Thus, anything that can be done with or to a free energy change can also be done to or with a cell potential.
- https://chem.libretexts.org/Courses/CSU_San_Bernardino/CHEM_2100%3A_General_Chemistry_I_(Mink)/17%3A_Electrochemistry/17.05%3A_Potential_Free_Energy_and_EquilibriumElectrical work is the negative of the product of the total charge (Q) and the cell potential (Ecell). The total charge can be calculated as the number of moles of electrons (n) times the Faraday cons...Electrical work is the negative of the product of the total charge (Q) and the cell potential (Ecell). The total charge can be calculated as the number of moles of electrons (n) times the Faraday constant (F = 96,485 C/mol e−). Electrical work is the maximum work that the system can produce and so is equal to the change in free energy. Thus, anything that can be done with or to a free energy change can also be done to or with a cell potential.
- https://chem.libretexts.org/Courses/CSU_San_Bernardino/CHEM_2200%3A_General_Chemistry_II_(Mink)/17%3A_Electrochemistry/17.05%3A_Potential_Free_Energy_and_EquilibriumElectrical work is the negative of the product of the total charge (Q) and the cell potential (Ecell). The total charge can be calculated as the number of moles of electrons (n) times the Faraday cons...Electrical work is the negative of the product of the total charge (Q) and the cell potential (Ecell). The total charge can be calculated as the number of moles of electrons (n) times the Faraday constant (F = 96,485 C/mol e−). Electrical work is the maximum work that the system can produce and so is equal to the change in free energy. Thus, anything that can be done with or to a free energy change can also be done to or with a cell potential.
- https://chem.libretexts.org/Courses/Louisville_Collegiate_School/General_Chemistry/LibreTexts_Louisville_Collegiate_School_Chapters_17%3A_Electrochemistry/LibreTexts%2F%2FLouisville_Collegiate_School%2F%2FChapters%2F%2F17%3A_Electrochemistry%2F%2F17.4%3A_The_Nernst_EquationElectrical work is the negative of the product of the total charge (Q) and the cell potential (Ecell). The total charge can be calculated as the number of moles of electrons (n) times the Faraday cons...Electrical work is the negative of the product of the total charge (Q) and the cell potential (Ecell). The total charge can be calculated as the number of moles of electrons (n) times the Faraday constant (F = 96,485 C/mol e−). Electrical work is the maximum work that the system can produce and so is equal to the change in free energy. Thus, anything that can be done with or to a free energy change can also be done to or with a cell potential.
- https://chem.libretexts.org/Courses/University_of_Kentucky/UK%3A_General_Chemistry/17%3A_Electrochemistry/17.4%3A_The_Nernst_EquationElectrical work is the negative of the product of the total charge (Q) and the cell potential (Ecell). The total charge can be calculated as the number of moles of electrons (n) times the Faraday cons...Electrical work is the negative of the product of the total charge (Q) and the cell potential (Ecell). The total charge can be calculated as the number of moles of electrons (n) times the Faraday constant (F = 96,485 C/mol e−). Electrical work is the maximum work that the system can produce and so is equal to the change in free energy. Thus, anything that can be done with or to a free energy change can also be done to or with a cell potential.
- https://chem.libretexts.org/Courses/Nassau_Community_College/General_Chemistry_II/05%3A_Electrochemistry/5.04%3A_The_Nernst_EquationElectrical work is the negative of the product of the total charge (Q) and the cell potential (Ecell). The total charge can be calculated as the number of moles of electrons (n) times the Faraday cons...Electrical work is the negative of the product of the total charge (Q) and the cell potential (Ecell). The total charge can be calculated as the number of moles of electrons (n) times the Faraday constant (F = 96,485 C/mol e−). Electrical work is the maximum work that the system can produce and so is equal to the change in free energy. Thus, anything that can be done with or to a free energy change can also be done to or with a cell potential.
- https://chem.libretexts.org/Workbench/OpenStax_Chemistry_Remixed%3A_Clovis_Community_College/17%3A_Electrochemistry/17.05%3A_Potential_Free_Energy_and_EquilibriumElectrical work is the negative of the product of the total charge (Q) and the cell potential (Ecell). The total charge can be calculated as the number of moles of electrons (n) times the Faraday cons...Electrical work is the negative of the product of the total charge (Q) and the cell potential (Ecell). The total charge can be calculated as the number of moles of electrons (n) times the Faraday constant (F = 96,485 C/mol e−). Electrical work is the maximum work that the system can produce and so is equal to the change in free energy. Thus, anything that can be done with or to a free energy change can also be done to or with a cell potential.
- https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(Fleming)/10%3A_Electrochemistry/10.01%3A_ElectricityThe passage provides a historical overview of the understanding and study of electricity, mentioning early observations by the Ancient Egyptians and experiments by William Gilbert and Benjamin Frankli...The passage provides a historical overview of the understanding and study of electricity, mentioning early observations by the Ancient Egyptians and experiments by William Gilbert and Benjamin Franklin. It highlights a major advancement by Alessandro Volta in 1799, who demonstrated electricity generation via a voltaic pile using chemical reactions.
- https://chem.libretexts.org/Courses/Oregon_Tech_PortlandMetro_Campus/OT_-_PDX_-_Metro%3A_General_Chemistry_II/09%3A_Electrochemistry/9.04%3A_The_Nernst_EquationElectrical work is the negative of the product of the total charge (Q) and the cell potential (Ecell). The total charge can be calculated as the number of moles of electrons (n) times the Faraday cons...Electrical work is the negative of the product of the total charge (Q) and the cell potential (Ecell). The total charge can be calculated as the number of moles of electrons (n) times the Faraday constant (F = 96,485 C/mol e−). Electrical work is the maximum work that the system can produce and so is equal to the change in free energy. Thus, anything that can be done with or to a free energy change can also be done to or with a cell potential.
- https://chem.libretexts.org/Under_Construction/Purgatory/CHEM_2100%3A_General_Chemistry_I_(Mink)/16%3A_Electrochemistry/16.04%3A_The_Nernst_EquationElectrical work is the negative of the product of the total charge (Q) and the cell potential (Ecell). The total charge can be calculated as the number of moles of electrons (n) times the Faraday cons...Electrical work is the negative of the product of the total charge (Q) and the cell potential (Ecell). The total charge can be calculated as the number of moles of electrons (n) times the Faraday constant (F = 96,485 C/mol e−). Electrical work is the maximum work that the system can produce and so is equal to the change in free energy. Thus, anything that can be done with or to a free energy change can also be done to or with a cell potential.
- https://chem.libretexts.org/Courses/Widener_University/CHEM_176%3A_General_Chemistry_II_(Fischer-Drowos)/09%3A_Electrochemistry/9.05%3A_Potential_Free_Energy_and_EquilibriumElectrical work is the negative of the product of the total charge (Q) and the cell potential (Ecell). The total charge can be calculated as the number of moles of electrons (n) times the Faraday cons...Electrical work is the negative of the product of the total charge (Q) and the cell potential (Ecell). The total charge can be calculated as the number of moles of electrons (n) times the Faraday constant (F = 96,485 C/mol e−). Electrical work is the maximum work that the system can produce and so is equal to the change in free energy. Thus, anything that can be done with or to a free energy change can also be done to or with a cell potential.