Skip to main content
Chemistry LibreTexts

3: Acids and Bases

  • Page ID
    291873
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    • 3.1: A Brief Review and Arrhenius acid-base definition
      In chemistry, acids and bases have been defined differently by three sets of theories: One is the Arrhenius definition defined above, which revolves around the idea that acids are substances that ionize (break off) in an aqueous solution to produce hydrogen (H+) ions while bases produce hydroxide (OH-) ions in solution. The other two definitions are discussed in detail alter in the chapter and include the Brønsted-Lowry definition and the Lewis theory.
    • 3.2: Brønsted–Lowry Acid-base definition
      A compound that can donate a proton (a hydrogen ion) to another compound is called a Brønsted-Lowry acid. The compound that accepts the proton is called a Brønsted-Lowry base. The species remaining after a Brønsted-Lowry acid has lost a proton is the conjugate base of the acid. The species formed when a Brønsted-Lowry base gains a proton is the conjugate acid of the base. Thus, an acid-base reaction occurs when a proton is transferred from an acid to a base.
    • 3.3: Autoionization of Water and pH scale
      Water is amphiprotic: it can act as an acid by donating a proton to a base to form the hydroxide ion, or as a base by accepting a proton from an acid to form the hydronium ion ( H3O+ ). The autoionization of liquid water produces OH− and H3O+ ions. The equilibrium constant for this reaction is called the ion-product constant of liquid water (Kw) and is defined as Kw=[H3O+][OH−] . At 25°C, Kw is 1.01×10−14 ; hence pH+pOH=pKw=14.00 .
    • 3.4: Acid base ionization constants (Ka and Kb relationship)
      Acid–base reactions always contain two conjugate acid–base pairs. Each acid and each base has an associated ionization constant that corresponds to its acid or base strength. Two species that differ by only a proton constitute a conjugate acid–base pair. The magnitude of the equilibrium constant for an ionization reaction can be used to determine the relative strengths of acids and bases.
    • 3.5: 3.5 Percentage ionization (% ionization)
    • 3.6: The Acid-Base Properties of Ions and Salts
      A salt can dissolve in water to produce a neutral, a basic, or an acidic solution, depending on whether it contains the conjugate base of a weak acid as the anion ( A−A− ), the conjugate acid of a weak base as the cation ( BH+ ), or both. Salts that contain small, highly charged metal ions produce acidic solutions in water. The reaction of a salt with water to produce an acidic or a basic solution is called a hydrolysis reaction.
    • 3.7: Lewis Acids and Bases
      Lewis proposed that the electron pair is the dominant actor in acid-base chemistry. An Lewis acid is a substance that accepts a pair of electrons, and in doing so, forms a covalent bond with the entity that supplies the electrons. A Lewis base is a substance that donates an unshared pair of electrons to a recipient species with which the electrons can be shared. Lewis acis/base theory is a powerful tool for describing many chemical reactions used in organic and inorganic chemistry.
    • 3.8: Acid-Base Chemistry in day today life (heartburn and Kitchen Chemistry))
      The characteristic properties of aqueous solutions of Brønsted-Lowry acids are due to the presence of hydronium ions; those of aqueous solutions of Brønsted-Lowry bases are due to the presence of hydroxide ions. The neutralization that occurs when aqueous solutions of acids and bases are combined results from the reaction of the hydronium and hydroxide ions to form water. Some salts formed in neutralization reactions may make the product solutions slightly acidic or slightly basic.
    • 3.E: Acid-Base (Practice Questions)
      These are homework exercises to accompany the Textmap created for "Chemistry" by OpenStax.
    • 3.E: Acid–Base (more practice questions with answers)
      These are homework exercises to accompany the Textmap created for "Chemistry: The Central Science" by Brown et al.


    3: Acids and Bases is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?