Skip to main content
Chemistry LibreTexts

1.14.22: Descriptions of Systems

  • Page ID
    374483
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Important themes in thermodynamics involve (i) properties (variables) which can be measured (e.g. volumes and/or densities) and (ii) thermodynamic variables which are rigorously defined (e.g. enthalpies). In these terms a measured property (e.g. density) is the reporter of the chemical properties or processes taking place in a system. So it is always important to ask if the “reporter” can be interrogated for the required information. In fact there is often a limit to the amount of information which a given reporter offers to the investigator. These important limitations should be borne in mind. An example makes the point.

    A system is prepared by placing \(\mathrm{n}_{\mathrm{X}}^{0}\) moles of substance in a closed vessel at fixed \(\mathrm{T}\) and \(\mathrm{p}\). [The superscript ‘0’ implies at zero time.] We explore two possible descriptions of this system. Perhaps two samples were analysed by two independent laboratories.

    Description A

    The first laboratory reports that the system is simple and contains the single substance \(\mathrm{X}\).

    Gibbs energy

    \[\mathrm{G}(\mathrm{A})=\mathrm{n}_{\mathrm{X}}^{0} \, \mu_{\mathrm{X}}^{*}(\ell)\]

    and volume

    \[\mathrm{V}(\mathrm{A})=\mathrm{n}_{\mathrm{X}}^{0} \, \mathrm{V}_{\mathrm{X}}^{*}(\ell)\]

    Here \(\mu_{X}^{*}(\ell)\) and \(\mathrm{V}_{\mathrm{x}}^{*}(\ell)\) are the chemical potential and molar volume of the pure chemical substance \(\mathrm{X}\).

    Description B

    The second laboratory identifies two substances \(\mathrm{X}\) and \(\mathrm{Y}\) in chemical equilibrium such that the equilibrium amounts of substances \(\mathrm{X}\) and \(\mathrm{Y}\) are respectively \(\mathrm{n}_{\mathrm{X}}^{\mathrm{eq}}\) and \(\mathrm{n}_{\mathrm{Y}}^{\mathrm{eq}}\).

    Gibbs energy

    \[\mathrm{G}(\mathrm{B})=\mathrm{n}_{\mathrm{X}}^{\mathrm{eq}} \, \mu_{\mathrm{X}}^{\mathrm{eq}}+\mathrm{n}_{\mathrm{Y}}^{\mathrm{eq}} \, \mu_{\mathrm{Y}}^{\mathrm{eq}}\]

    and volume

    \[\mathrm{V}(\mathrm{B})=\mathrm{n}_{\mathrm{X}}^{\mathrm{eq}} \, \mathrm{V}_{\mathrm{X}}^{\mathrm{eq}}+\mathrm{n}_{\mathrm{Y}}^{\mathrm{eq}} \, \mathrm{V}_{\mathrm{Y}}^{\mathrm{eq}}\]

    Here \(\mu_{\mathrm{X}}^{\mathrm{eq}}\) and \(\mu_{\mathrm{Y}}^{\mathrm{eq}}\) are the equilibrium chemical potentials; \(\mathrm{V}_{\mathrm{X}}^{\mathrm{eq}}\) and \(\mathrm{V}_{\mathrm{Y}}^{\mathrm{eq}}\) are the equilibrium partial molar volumes.

    Description A is “primitive” and Description B is “sophisticated”. Both Gibbs energies and volumes are functions of state so that \(\mathrm{V}(\mathrm{A})=\mathrm{V}(\mathrm{B})\) and \(\mathrm{G}(\mathrm{A})=\mathrm{G}(\mathrm{B})\). The chemical potential of substance \(\mathrm{X}\) describes the change in \(\mathrm{G}\) when \(\delta n_{X}\) moles of \(\mathrm{X}\) are added. This chemical potential is insensitive to the changes taking place in the equilibrium system;\(\mu_{X}(\mathrm{~A})=\mu_{X}(\mathrm{~B})\). Consequently, measurement of volume \(\mathrm{V}\) [and if it were possible of \(\mathrm{G}\)] would not distinguish between the two descriptions. Similarly, measurement of \(\mathrm{H}\) (if it were possible) would not distinguish between the two descriptions.

    Footnotes

    [1] L. P. Hammett, Physical Organic Chemistry, McGraw-Hill, New York, 2nd edn., 1970,p.16.


    This page titled 1.14.22: Descriptions of Systems is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis.

    • Was this article helpful?