Skip to main content
Chemistry LibreTexts

1.14.21: Donnan Membrane Equilibria

  • Page ID
    374485
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    A given experimental system comprises two compartments, I and II, separated by a membrane. The two compartments contain aqueous solutions at common temperature and pressure. The experimental system is set up by placing in compartment I an aqueous salt solution; e.g. \(\mathrm{NaCl}(\mathrm{aq})\) having concentration \(\mathrm{c}_{1} \mathrm{~mol dm}^{-3}\). However compartment II contains a salt, \(\mathrm{R}^{+}\mathrm{Cl}^{-} (\mathrm{aq})\), concentration \(\mathrm{c}_{2} \mathrm{~mol dm}^{-3}\). The membrane is permeable to both \(\mathrm{Na}^{+} and \(\mathrm{Cl}^{-}\) ions but not to \(\mathrm{R}^{+}\) cations. The sodium and chloride ions spontaneously diffuse across the membrane until the two solutions are in thermodynamic equilibrium. We represent the equilibrium system as follows where | | represents the membrane.

    [I]

    \[ \mathrm{Na}^{+}\left(\mathrm{c}_{1}-\alpha\right)^{\mathrm{cq}} \mathrm{Cl}^{-}\left(\mathrm{c}_{1}-\alpha\right)^{\mathrm{eq}}||[\mathrm{II}] \mathrm{Na}^{+}(\alpha)^{\mathrm{eq}} \mathrm{R}^{+}\left(\mathrm{c}_{2}\right)^{\mathrm{eq}} \mathrm{Cl}^{-}\left(\mathrm{c}_{2}+\alpha\right)^{\mathrm{eq}}\]

    The solutions on both sides are electrically neutral. A thermodynamic analysis is somewhat complicated if account is taken of the role of ion-ion interactions. However the essential features of the argument are revealed if we identify the activities of the ions as equal to their concentrations.

    Hence at equilibrium at fixed \(\mathrm{T}\) and \(\mathrm{p}\),

    \[\begin{aligned}
    &{\left[\mu^{0}\left(\mathrm{Na}^{+} ; \mathrm{aq}\right)+\mathrm{R} \, \mathrm{T} \, \ln \left\{\left(\mathrm{c}_{1}-\alpha\right)_{\mathrm{Na}}^{\mathrm{eq}} / \mathrm{c}_{\mathrm{r}}\right\}\right]_{\mathrm{I}}} \\
    &+\left[\mu^{0}\left(\mathrm{Cl}^{-} ; \mathrm{aq}\right)+\mathrm{R} \, \mathrm{T} \, \ln \left\{\left(\mathrm{c}_{1}-\alpha\right)_{\mathrm{Cl}}^{\mathrm{eq}} / \mathrm{c}_{\mathrm{r}}\right\}\right]_{\mathrm{I}}= \\
    &{\left[\mu^{0}\left(\mathrm{Na}^{+} ; \mathrm{aq}\right)+\mathrm{R} \, \mathrm{T} \, \ln \left\{\alpha_{\mathrm{Na+}}^{\mathrm{eq}} / \mathrm{c}_{\mathrm{r}}\right\}\right]_{\mathrm{II}}} \\
    &+\left[\mu^{0}\left(\mathrm{Cl}^{-} ; \mathrm{aq}\right)+\mathrm{R} \, \mathrm{T} \, \ln \left\{\left(\mathrm{c}_{2}+\alpha\right)_{\mathrm{Cl-}}^{\mathrm{eq}} / \mathrm{c}_{\mathrm{r}}\right\}\right]_{\mathrm{II}}
    \end{aligned}\]

    But

    \[\left(c_{1}-\alpha\right)_{\mathrm{Na+}}^{\mathrm{eq}}=\left(\mathrm{c}_{1}-\alpha\right)_{\mathrm{Cl}-}^{\mathrm{eq}}\]

    Or,

    \[\left[\left(c_{1}-\alpha\right)_{\mathrm{Na}+}^{\mathrm{eq}}\right]^{2}=\alpha_{\mathrm{Na}+}^{\mathrm{eq}} \,\left(\mathrm{c}_{2}+\alpha\right)^{\mathrm{eq}} \mathrm{CI}^{-}\]

    Then [1],

    \[\frac{\alpha^{\mathrm{eq}}}{\mathrm{c}_{1}}=\frac{\mathrm{c}_{1}}{2 \, \mathrm{c}_{1}+\mathrm{c}_{2}}\]

    The latter is Donnan’s Equation. The ratio \(\left(\alpha^{\mathrm{eq}} / \mathrm{c}_{1}\right)\) tends to be smaller the larger is \(\mathrm{c}_{2}\). This conclusion is confirmed by experiment.

    We have simplified the algebra by writing \(\mathrm{R}^{+} \mathrm{Cl}^{-}\) as the salt in compartment II. In practice the Donnan equilibrium finds major application where salt \(\mathrm{RCl}\) is a macromolecule [2-4].

    Footnotes

    [1] \(\mathrm{c}_{1}^{2}-2 \, \alpha \, \mathrm{c}_{1}+\alpha^{2}=\alpha \, \mathrm{c}_{2}+\alpha^{2}\)

    Then, \(c_{1}^{2}-2 \, \alpha \, c_{1}=\alpha \, c_{2}\)

    Or, \(\alpha=\frac{\mathrm{c}_{1}^{2}}{2 \, \mathrm{c}_{1}+\mathrm{c}_{2}}\)

    [2] F. G. Donnan et al, J. Chem. Soc.,1911, 1554; 1914,1941.

    [3] F. G. Donnan, Chem. Rev.,1924, 1,73.

    [4] F. G. Donnan and E. A. Guggenheim, Z. Physik Chem. A, 1932,162,346.


    This page titled 1.14.21: Donnan Membrane Equilibria is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis.