Skip to main content
Chemistry LibreTexts

1.71: The Wigner Distribution for a Particle in a One‐dimensional Box

  • Page ID
    156465
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The following outlines the calculation of the Wigner distribution for a particle in a one‐dimensional box for the n = 10 state. First the coordinate wave function is Fourier transformed into momentum space. Following that the Wigner function is calculated using the momentum space wave function.

    \[
    \Psi(x) :=\sqrt{2} \cdot \sin (10 \cdot \pi \cdot x)
    \nonumber \]

    clipboard_e092526bafb30d25bb6f9ff999191b538.png

    \[
    \Phi(\mathrm{p}) :=\frac{1}{\sqrt{2 \cdot \pi}} \cdot \int_{0}^{1} \exp (-\mathrm{i} \cdot \mathrm{p} \cdot \mathrm{r}) \cdot \Psi(\mathrm{x}) \mathrm{dx} \text { simplify } \rightarrow-\frac{10 \cdot \sqrt{\pi} \cdot\left(\mathrm{e}^{-\mathrm{p} \cdot \mathrm{i}}-1\right)}{100 \cdot \pi^{2}-\mathrm{p}^{2}}
    \nonumber \]

    clipboard_e55b08c2ed19f56dc139f337cfa444a4c.png

    \[
    \mathrm{W}(\mathrm{x}, \mathrm{p}) :=\frac{1}{2 \cdot \pi} \cdot \int_{-\infty}^{\infty} \overline{\Phi\left(\mathrm{p}+\frac{\mathrm{s}}{2}\right)} \cdot \exp (-\mathrm{i} \cdot \mathrm{s} \cdot \mathrm{x}) \cdot \Phi\left(\mathrm{p}-\frac{\mathrm{s}}{2}\right) \mathrm{ds}
    \nonumber \]

    \[
    \mathrm{N} :=80 \qquad \mathrm{i} :=0 \ldots \mathrm{N} \qquad \mathrm{x}_{\mathrm{i}} :=\frac{\mathrm{i}}{\mathrm{N}} \\ \mathrm{j} :=0 \ldots \mathrm{N} \qquad \mathrm{p}_{\mathrm{j}} :=-40+\frac{80 \cdot \mathrm{j}}{\mathrm{N}} \qquad \text{Wigner}_{i, j} :=W\left(x_{i}, p_{j}\right)
    \nonumber \]

    clipboard_e3b48f63f8355d3f2adf1dcdaf9860f42.png


    This page titled 1.71: The Wigner Distribution for a Particle in a One‐dimensional Box is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.