1.70: Wigner Distribution for the Particle in a Box
- Page ID
- 156420
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)The Wigner function is a quantum mechanical phase-space quasi-probability function. It is called a quasi-probability function because it can take on negative values, which have no classical meaning in terms of probability.
The PIB eigenstates for a box of unit dimension are given by:
\[
\Psi(x, n) :=\sqrt{2} \cdot \sin (n \cdot \pi \cdot x)
\nonumber \]
For these eigenstates the Wigner distribution function is:
\[
\mathrm{W}(\mathrm{x}, \mathrm{p}, \mathrm{n}) :=\frac{1}{\pi} \cdot \int_{-\mathrm{x}}^{\mathrm{x}} \sqrt{2} \cdot \sin [\mathrm{n} \cdot \pi \cdot(\mathrm{x}+\mathrm{s})] \cdot \exp (2 \cdot \mathrm{i} \cdot \mathrm{s} \cdot \mathrm{p}) \cdot \sqrt{2} \cdot \sin [\mathrm{n} \cdot \pi \cdot(\mathrm{x}-\mathrm{s})] \mathrm{ds}
\nonumber \]
Integration with respect to s yields the following function:
\[
\mathrm{W}(\mathrm{x}, \mathrm{p}, \mathrm{n}) :=\frac{2}{\pi} \cdot\left[\frac{\sin [2 \cdot(\mathrm{p}-\mathrm{n} \cdot \pi) \cdot \mathrm{x}]}{4 \cdot(\mathrm{p}-\mathrm{n} \cdot \pi)}+\frac{\sin [2 \cdot(\mathrm{p}+\mathrm{n} \cdot \pi) \cdot \mathrm{x}]}{4 \cdot(\mathrm{p}+\mathrm{n} \cdot \pi)}-\cos (2 \cdot \mathrm{n} \cdot \pi \cdot \mathrm{x}) \cdot \frac{\sin (2 \cdot p \cdot \mathrm{x})}{2 \cdot p}\right]
\nonumber \]
The Wigner distribution for the nth eigenstate is calculated below:
\[
\mathrm{n} :=10 \qquad \mathrm{N} :=115 \qquad \mathrm{i} :=0 . . \mathrm{N} \\ \mathrm{x}_{\mathrm{i}} :=\frac{\mathrm{i}}{\mathrm{N}} \qquad \mathrm{j} :=0 . . \mathrm{N} \qquad \mathrm{p}_{\mathrm{j}} :=-40+\frac{80 \cdot \mathrm{j}}{\mathrm{N}}
\nonumber \]
\[
\text{Wigner}_{i, j} :=\operatorname{if}\left[x_{i} \leq 0.5, W\left(x_{i}, p_{j}, n\right), W\left[\left(1-x_{i}\right), p_{j}, n\right]\right]
\nonumber \]
Integration of the Wigner function over the spatial coordinate yields the momentum distribution function as is shown below.
\[
\rho(\mathrm{p}) :=\int_{0}^{1} \mathrm{W}(\mathrm{x}, \mathrm{p}, \mathrm{n}) \mathrm{dx} \qquad \mathrm{p} :=-40,-39.5 \ldots40
\nonumber \]
Integration of the Wigner function over the momentum coordinate yields the spatial distribution function as is shown below.
\[
\rho(\mathrm{x}) :=\int_{-51}^{50} \mathrm{W}(\mathrm{x}, \mathrm{p}, \mathrm{n}) \mathrm{dp} \qquad \mathrm{x} :=0,01 \ldots 1
\nonumber \]
The Wigner distribution can be used to calculate the expectation values for position, momentum and kinetic energy.
\[
\mathrm{x}_{\mathrm{bar}}=\int_{-\infty}^{\infty} \int_{0}^{1} \mathrm{W}(\mathrm{x}, \mathrm{p}, 1) \cdot \mathrm{x} \text { dx dp simplify } \rightarrow \mathrm{x}_{\mathrm{bar}}=\frac{1}{2}
\nonumber \]
\[
\mathrm{p}_{\mathrm{bar}}=\int_{-\infty}^{\infty} \int_{0}^{1} \mathrm{W}(\mathrm{x}, \mathrm{p}, 1) \cdot \mathrm{p} \mathrm{dx} \text { dp simplify } \rightarrow \mathrm{p}_{\mathrm{bar}}=0
\nonumber \]
\[
\mathrm{T}_{\mathrm{bar}}=\int_{-\infty}^{\infty} \int_{0}^{1} \mathrm{W}(\mathrm{x}, \mathrm{p}, 1) \cdot \frac{\mathrm{p}^{2}}{2} \mathrm{d} \mathrm{x} \text { dp simplify } \rightarrow \mathrm{T}_{\mathrm{bar}}=\frac{1}{2} \cdot \pi^{2}
\nonumber \]
References:
"Wigner quasi-probability distribution for the infinite square well: Energy eigenstates and time-dependent wave packets," by Belloni, Docheski and Robinett; American Journal of Physics 72(9), 1183-1192 (2004).
"Wigner functions and Weyl transforms for pedestrians," by William Case, American Journal of Physics 76(10), 937-946 (2008).