# 1.69: The Wigner Distribution Function for the Harmonic Oscillator

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

Given the quantum number this Mathcad file calculates the Wigner distribution function for the specified harmonic oscillator eigenstate using the coordinate wave function.

Quantum number: $$n :=4$$

Harmonic oscillator coordinate eigenstate:

$\Psi(\mathrm{n}, \mathrm{x}) :=\frac{1}{\sqrt{2^{\mathrm{n}} \cdot \mathrm{n} ! \sqrt{\pi}}} \cdot \operatorname{Her}(\mathrm{n}, \mathrm{x}) \cdot \exp \left(-\frac{\mathrm{x}^{2}}{2}\right) \nonumber$

Display coordinate wave function and distribution function:

Calculate Wigner distribution:

$\mathrm{W}(\mathrm{n}, \mathrm{x}, \mathrm{p}) :=\frac{1}{\pi^{\frac{3}{2}}} \cdot \int_{-\infty}^{\infty} \Psi\left(\mathrm{n}, \mathrm{x}+\frac{\mathrm{s}}{2}\right) \cdot \exp (\mathrm{i} \cdot \mathrm{s} \cdot \mathrm{p}) \cdot \Psi\left(\mathrm{n}, \mathrm{x}-\frac{\mathrm{s}}{2}\right) \mathrm{ds} \nonumber$

Display Wigner distribution:

$\mathrm{N} :=80 \qquad \mathrm{i} :=0 \ldots \mathrm{N} \qquad \mathrm{x}_{\mathrm{i}}=-4+\frac{8 \cdot \mathrm{i}}{\mathrm{N}} \\ \mathrm{j} :=0 \ldots \mathrm{N} \qquad \mathrm{p}_{\mathrm{j}}=-5+\frac{10 \cdot \mathrm{j}}{\mathrm{N}} \qquad \text{Wigner}_{i,j} : = W(n, x_{i}, p_{j}) \nonumber$

Calculate the momentum distribution function using the Wigner function:

$\rho(\mathrm{p}) :=\int_{-\infty}^{\infty} \mathrm{W}(\mathrm{n}, \mathrm{x}, \mathrm{p}) \mathrm{dx} \qquad \mathrm{p} :=-5,-4.95 \ldots5 \nonumber$

This page titled 1.69: The Wigner Distribution Function for the Harmonic Oscillator is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.