Skip to main content
Chemistry LibreTexts

1.69: The Wigner Distribution Function for the Harmonic Oscillator

  • Page ID
    156464
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Given the quantum number this Mathcad file calculates the Wigner distribution function for the specified harmonic oscillator eigenstate using the coordinate wave function.

    Quantum number: \( n :=4\)

    Harmonic oscillator coordinate eigenstate:

    \[
    \Psi(\mathrm{n}, \mathrm{x}) :=\frac{1}{\sqrt{2^{\mathrm{n}} \cdot \mathrm{n} ! \sqrt{\pi}}} \cdot \operatorname{Her}(\mathrm{n}, \mathrm{x}) \cdot \exp \left(-\frac{\mathrm{x}^{2}}{2}\right)
    \nonumber \]

    Display coordinate wave function and distribution function:

    clipboard_ef3840792be84c206e6322e25115527dd.png

    clipboard_e6f50e23e7173f103f2497583059a151a.png

    Calculate Wigner distribution:

    \[
    \mathrm{W}(\mathrm{n}, \mathrm{x}, \mathrm{p}) :=\frac{1}{\pi^{\frac{3}{2}}} \cdot \int_{-\infty}^{\infty} \Psi\left(\mathrm{n}, \mathrm{x}+\frac{\mathrm{s}}{2}\right) \cdot \exp (\mathrm{i} \cdot \mathrm{s} \cdot \mathrm{p}) \cdot \Psi\left(\mathrm{n}, \mathrm{x}-\frac{\mathrm{s}}{2}\right) \mathrm{ds}
    \nonumber \]

    Display Wigner distribution:

    \[
    \mathrm{N} :=80 \qquad \mathrm{i} :=0 \ldots \mathrm{N} \qquad \mathrm{x}_{\mathrm{i}}=-4+\frac{8 \cdot \mathrm{i}}{\mathrm{N}} \\ \mathrm{j} :=0 \ldots \mathrm{N} \qquad \mathrm{p}_{\mathrm{j}}=-5+\frac{10 \cdot \mathrm{j}}{\mathrm{N}} \qquad \text{Wigner}_{i,j} : = W(n, x_{i}, p_{j})
    \nonumber \]

    clipboard_eb0e990643ce959119d7e76a836f8b32b.png

    Calculate the momentum distribution function using the Wigner function:

    \[
    \rho(\mathrm{p}) :=\int_{-\infty}^{\infty} \mathrm{W}(\mathrm{n}, \mathrm{x}, \mathrm{p}) \mathrm{dx} \qquad \mathrm{p} :=-5,-4.95 \ldots5
    \nonumber \]

    clipboard_e81864c72f72b676fa7dae069ffea8df2.png


    This page titled 1.69: The Wigner Distribution Function for the Harmonic Oscillator is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.