Skip to main content
Chemistry LibreTexts

1.30: From Coordinate Space to Momentum Space and Back

  • Page ID
    143937
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The 2s state of the one-dimensional hydrogen atom is used to illustrate transformations back and forth between the coordinate and momentum representations.

    \[
    \Psi_{2}(x) :=\frac{1}{\sqrt{8}} \cdot x \cdot(2-x) \cdot \exp \left(-\frac{x}{2}\right)
    \nonumber \]

    clipboard_ee57ab852c13019595eca912895772172.png

    The 2s state is Fourier transformed into momentum space (using atomic units) and the magnitude of the momentum wave function is displayed.

    \[
    \langle p | \Psi_{2}\rangle=\int_{0}^{\infty}\langle p | x\rangle\langle x | \Psi_{2}\rangle d x \quad \text { where } \quad\langle p | x\rangle=\frac{1}{\sqrt{2 \pi}} \exp \left(\frac{-i p x}{\hbar}\right)
    \nonumber \]

    \[
    \Psi_{2}(\mathrm{p}) :=\frac{1}{\sqrt{2 \cdot \pi}} \int_{0}^{\infty} \exp (-\mathrm{i} \cdot \mathrm{p} \cdot \mathrm{x}) \cdot \Psi_{2}(\mathrm{x}) \mathrm{d} x \text { simplify } \rightarrow \frac{2}{\pi^{\frac{1}{2}}} \cdot \frac{2 \cdot \mathrm{i} \cdot \mathrm{p}-1}{(2 \cdot \mathrm{i} \cdot \mathrm{p}+1)^{3}}
    \nonumber \]

    clipboard_e3e7ee176804b7972b9801e120fc6652a.png

    The return to coordinate space is carried out in the numeric mode, integrating over the range of momentum values shown above (\(\pm\)10 is effectively \(\pm \infty\)).

    \[
    \langle x | \Psi_{2}\rangle=\int_{-\infty}^{\infty}\langle x | p\rangle\langle p | \Psi_{2}\rangle d p \quad \text { where } \quad\langle x | p\rangle=\frac{1}{\sqrt{2 \pi}} \exp \left(\frac{i p x}{\hbar}\right)
    \nonumber \]

    \[
    \Psi_{2}(x) :=\int_{-10}^{10} \frac{1}{\sqrt{2 \cdot \pi}} \cdot \exp (i \cdot p \cdot x) \cdot \Psi_{2}(p) d p
    \nonumber \]

    The graphical display below shows that we have successfully returned to coordinate space.

    clipboard_e0a4e0a33c1bbe145a2749c81ef4a0011.png


    This page titled 1.30: From Coordinate Space to Momentum Space and Back is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.