Skip to main content
Chemistry LibreTexts

1.101: Related Analysis of the Stern-Gerlach Experiment

  • Page ID
    158607
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Silver atoms are deflected by an inhomogeneous magnetic field because of the two-valued magnetic moment associated with their unpaired 5s electron ([Kr]5s14d10). The beam of silver atoms entering the Stern-Gerlach magnet oriented in the z-direction (SGZ) on the left is unpolarized. This means it is a mixture of randomly polarized Ag atoms. A mixture cannot be represented by a wave function, it requires a density matrix, as will be shown later.

    clipboard_e35e4e1a4e2355ebe7a3a9baa031d92c5.png

    This situation is exactly analogous to the three-polarizer demonstration. Light emerging from an incadescent light bulb is unpolarized, a mixture of all possible polarization angles, so we can't write a wave function for it. The first Stern-Gerlach magnet plays the same role as the first polarizer, it forces the Ag atoms into one of measurement eigenstates - spin-up or spin-down in the z-direction. The only difference is that in the three-polarizer demonstration only one state was created - vertical polarization. Both demonstrations illustrate that the only values that are observed in an experiment are the eigenvalues of the measurement operator.

    To continue with the analysis of the Stern-Gerlach demonstration we need vectors to represent the various spin states of the Ag atoms.

    Spin Eigenfunctions

    Spin-up in the z-direction: \(\alpha_{\mathrm{Z}} :=\left(\begin{array}{l}{1} \\ {0}\end{array}\right)\)
    Spin-down in the z-direction: \(\beta_{\mathrm{z}} :=\left(\begin{array}{l}{0} \\ {1}\end{array}\right)\)
    Spin-up in the x-direction: \(\alpha_{\mathrm{x}} :=\frac{1}{\sqrt{2}} \cdot\left(\begin{array}{l}{1} \\ {1}\end{array}\right)\)
    Spin-down in the x-direction: \(\beta_{\mathrm{x}} :=\frac{1}{\sqrt{2}} \cdot\left(\begin{array}{c}{1} \\ {-1}\end{array}\right)\)

    In the next step, the spin-up beam (deflected toward by the magnet's north pole) enters a magnet oriented in the x-direction, SGX. The \(\alpha_{z}\) beam splits into \(\alpha_{x}\) and \(\beta_{x}\) beams of equal intensity. This is because it is a superposition of the x-direction spin eigenstates as shown below.

    \[
    \frac{1}{\sqrt{2}} \cdot\left[\frac{1}{\sqrt{2}} \cdot\left(\begin{array}{l}{1} \\ {1}\end{array}\right)+\frac{1}{\sqrt{2}} \cdot\left(\begin{array}{c}{1} \\ {-1}\end{array}\right)\right] \rightarrow\left(\begin{array}{c}{1} \\ {0}\end{array}\right) \qquad \frac{1}{\sqrt{2}} \cdot\left(\alpha_{\mathrm{x}}+\beta_{\mathrm{x}}\right) \rightarrow\left(\begin{array}{l}{1} \\ {0}\end{array}\right)
    \nonumber \]

    Next the \(\alpha_{x}\) beam is directed toward a second SGZ magnet and splits into two equal \(\alpha_{z}\) and \(\beta_{z}\) beams. This happens because \(\alpha_{x}\) is a superposition of the \(\alpha_{z}\) and \(\beta_{z}\) spin states.

    \[
    \frac{1}{\sqrt{2}} \cdot\left[\left(\begin{array}{l}{1} \\ {0}\end{array}\right)+\left(\begin{array}{l}{0} \\ {1}\end{array}\right)\right]=\left(\begin{array}{c}{0.707} \\ {0.707}\end{array}\right) \qquad \frac{1}{\sqrt{2}} \cdot\left(\alpha_{\mathrm{z}}+\beta_{\mathrm{z}}\right)=\left(\begin{array}{c}{0.707} \\ {0.707}\end{array}\right)
    \nonumber \]

    Operators

    We can also use the Pauli operators (in units of h/4\(\pi\)) to analyze this experiment.

    SGZ operator:

    \[\mathrm{SGZ} :=\left(\begin{array}{cc}{1} & {0} \\ {0} & {-1}\end{array}\right) \nonumber \]

    SGX operator:

    \[\operatorname{SGX} :=\left(\begin{array}{ll}{0} & {1} \\ {1} & {0}\end{array}\right) \nonumber \]

    The probability that an \(\alpha_{z}\) Ag atom will emerge spin-up after passing through a SGX magnet:

    Probability amplitude:

    \[\alpha_{\mathrm{x}}^{\mathrm{T}} \cdot \mathrm{SGX} \cdot \mathrm{\alpha}_{\mathrm{Z}}=0.707 \nonumber \]

    Probability:

    \[\left(\alpha_{x}^{T} \cdot \operatorname{SGX} \cdot \alpha_{z}\right)^{2}=0.5 \nonumber \]

    The probability that an \(\alpha_{z}\) Ag atom will emerge spin-down after passing through a SGX magnet:

    Probability amplitude:

    \[\beta_{\mathrm{x}}^{\mathrm{T}} \cdot \mathrm{SGX} \cdot \alpha_{\mathrm{z}}=-0.707 \nonumber \]

    Probability:

    \[\left(\beta_{\mathrm{x}}^{\mathrm{T}} \cdot \mathrm{SGX} \cdot \alpha_{\mathrm{z}}\right)^{2}=0.5 \nonumber \]

    The probability that an \(\alpha_{x}\) Ag atom will emerge spin-up after passing through a SGZ magnet:

    Probability amplitude:

    \[
    \alpha_{z}^{T} \cdot \operatorname{SGX} \cdot \alpha_{x}=0.707
    \nonumber \]

    Probability:

    \[
    \left(\alpha_{z}^{T} \cdot \operatorname{SGX} \cdot \alpha_{x}\right)^{2}=0.5
    \nonumber \]

    The probability that an \(\alpha_{x}\) Ag atom will emerge spin-down after passing through a SGZ magnet:

    Probability amplitude:

    \[
    \beta_{\mathrm{z}}^{\mathrm{T}} \cdot \mathrm{SGX} \cdot \alpha_{\mathrm{x}}=0.707
    \nonumber \]

    Probability:

    \[
    \left(\beta_{\mathrm{z}}^{\mathrm{T}} \cdot \mathrm{SGX} \cdot \alpha_{\mathrm{x}}\right)^{2}=0.5
    \nonumber \]

    In examining the figure above we note that the SGX magnet distroys the entering \(\alpha_{z}\) state, creating a superposition of spin-up and spin-down in the x-direction. Again measurement forces the system into one of the eigenstates of the measurement operator.

    Density Operator (Matrix) Approach

    A more general analysis is based on the concept of the density operator (matrix), in general given by the following outer product \(|\Psi><\Psi|\). It is especially important because it can be used to represent mixtures, which cannot be represented by wave functions as noted above.

    For example, the probability that an \(\alpha_{z}\) spin system will emerge in the \(\alpha_{x}\) channel of a SGX magnet is equal to the trace of the product of the density matrices representing the \(\alpha_{z}\) and \(\alpha_{x}\) states as shown below.

    \[
    \begin{split} \left|\left\langle\alpha_{x} | \alpha_{z}\right\rangle\right|^{2}&=\left\langle\alpha_{z} | \alpha_{x}\right\rangle\left\langle\alpha_{x} | \alpha_{z}\right\rangle\\&=\sum_{i}\left\langle\alpha_{z} | i\right\rangle\left\langle i | \alpha_{x}\right\rangle\left\langle\alpha_{x} | \alpha_{z}\right\rangle\\&=\sum_{i}\left\langle i | \alpha_{x}\right\rangle\left\langle\alpha_{x} | \alpha_{z}\right\rangle\left\langle\alpha_{z} | i\right\rangle \\&=\operatorname{Tr}\left(\left|\alpha_{x}\right\rangle\left\langle\alpha_{x} | \alpha_{z}\right\rangle\left\langle\alpha_{z}\right|\right)=\operatorname{Tr}\left(\widehat{\rho_{\alpha_{x}}} \widehat{\rho_{\alpha_{z}}}\right)\end{split}
    \nonumber \]

    where the completeness relation \(\sum_{i}|i\rangle\langle i|=1\) has been employed.

    Density matrices for spin-up and spin-down in the z-direction:

    \[
    \rho_{\alpha z} :=\alpha_{z} \cdot \alpha_{z}^{T} \qquad \rho_{\beta z} :=\beta_{z} \cdot \beta_{z}^{T}
    \nonumber \]

    Density matrices for spin-up and spin-down in the x-direction:

    \[
    \rho_{\mathrm{Qx}} :=\alpha_{\mathrm{x}} \cdot \alpha_{\mathrm{x}}^{\mathrm{T}} \qquad \rho_{\beta \mathrm{x}} :=\beta_{\mathrm{x}} \cdot \beta_{\mathrm{x}}^{\mathrm{T}}
    \nonumber \]

    An unpolarized spin system can be represented by a 50-50 mixture of any two orthogonal spin density matrices. Below it is shown that using the z-direction and the x-direction give the same answer.

    \[
    \rho_{\operatorname{mix}} :=\frac{1}{2} \cdot \rho_{\alpha z}+\frac{1}{2} \cdot \rho_{\beta z}=\left(\begin{array}{cc}{0.5} & {0} \\ {0} & {0.5}\end{array}\right)
    \nonumber \]

    Now we re-analyze the Stern-Gerlach experiment using the density operator (matrix) approach.

    The probability that an unpolarized spin system will emerge in the \(\alpha_{z}\) channel of a SGZ magnet is 0.5:

    \[
    \operatorname{tr}\left(\rho_{\alpha z} \cdot \rho_{\operatorname{mix}}\right)=0.5
    \nonumber \]

    The probability that the \(\alpha_{z}\) beam will emerge in the \(\alpha_{x}\) channel of a SGX magnet is 0.5:

    \[
    \operatorname{tr}\left(\rho_{\mathrm{\alpha x}} \cdot \rho_{\mathrm{\alpha z}}\right)=0.5
    \nonumber \]

    The probability that the \(\alpha_{x}\) beam will emerge in the \(\alpha_{z}\) channel of the final SGZ magnet is 0.5:

    \[
    \operatorname{tr}\left(\rho_{\alpha z} \cdot \rho_{\alpha x}\right)=0.5
    \nonumber \]

    The probability that the \(\alpha_{x}\) beam will emerge in the \(\beta_{z}\) channel of the final SGZ magnet is 0.5:

    \[
    \operatorname{tr}\left(\rho_{\beta z} \cdot \rho_{\mathrm{\alpha x}}\right)=0.5
    \nonumber \]

    After the final SGZ magnet, 1/8 of the original Ag atoms emerge in the \(\alpha_{z}\) channel and 1/8 in the \(\beta_{z}\) channel.

    \[
    \operatorname{tr}\left(\rho_{\alpha z} \cdot \rho_{\alpha x}\right) \cdot \operatorname{tr}\left(\rho_{\alpha x} \cdot\rho_{\alpha z}\right) \cdot \operatorname{tr}\left(\rho_{\alpha z} \cdot \rho_{\operatorname{mix}}\right)=0.125 \\ \operatorname{tr}\left(\rho_{\beta z} \cdot \rho_{\alpha x}\right) \cdot \operatorname{tr}\left(\rho_{\alpha x} \cdot \rho_{\alpha z}\right) \cdot \operatorname{tr}\left(\rho_{\alpha z} \cdot \rho_{\operatorname{mix}}\right)=0.125
    \nonumber \]


    This page titled 1.101: Related Analysis of the Stern-Gerlach Experiment is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Frank Rioux via source content that was edited to the style and standards of the LibreTexts platform.