1.103: Bloch Sphere
- Page ID
- 158610
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)The eigenfunctions of the Pauli spin matrices
\[
\sigma_{\mathrm{Z}} :=\left(\begin{array}{cc}{1} & {0} \\ {0} & {-1}\end{array}\right) \qquad \sigma_{\mathrm{x}} :=\left(\begin{array}{cc}{0} & {1} \\ {1} & {0}\end{array}\right) \qquad \sigma_{\mathrm{y}} :=\left(\begin{array}{cc}{0} & {-\mathrm{i}} \\ {\mathrm{i}} & {0}\end{array}\right)
\nonumber \]
are presented mathematically and shown on the Bloch sphere below. The Xu state is highlighted.
\[
Z_{u} :=\left(\begin{array}{l}{1} \\ {0}\end{array}\right) \qquad Z_{d} :=\left(\begin{array}{l}{0} \\ {1}\end{array}\right) \\ \mathrm{X}_{\mathrm{u}} :=\frac{1}{\sqrt{2}} \cdot\left(\begin{array}{l}{1} \\ {1}\end{array}\right) \qquad \mathrm{X}_{\mathrm{d}} :=\frac{1}{\sqrt{2}} \cdot\left(\begin{array}{c}{1} \\ {-1}\end{array}\right) \\ \mathrm{Y}_{\mathrm{u}} :=\frac{1}{\sqrt{2}} \cdot\left(\begin{array}{l}{1} \\ {\mathrm{i}}\end{array}\right) \qquad \mathrm{Y}_{\mathrm{d}} :=\frac{1}{\sqrt{2}} \cdot\left(\begin{array}{c}{1} \\ {-\mathrm{i}}\end{array}\right)
\nonumber \]
This figure was taken from demonstrations.wolfram.com/QubitsOnThePoincareBlochSphere/ a contribution by Rudolf Muradian.
The Bloch sphere is prepared in Cartesian coordinates using Mathcad graphics.
\[
\text{numpts}:=100 \qquad \mathrm{i} :=0 \ldots \text { numpts } \qquad \mathrm{j} :=0 \ldots \text{numpts} \\ \theta_{\mathrm{i}} :=\frac{\pi \cdot \mathrm{i}}{\text { numpts }} \quad \phi_{\mathrm{j}} :=\frac{2 \cdot \pi \cdot \mathrm{j}}{\text { numpts }} \\ \mathrm{X}_{\mathrm{i}, \mathrm{j}}=\sin \left(\theta_{\mathrm{i}}\right) \cdot \cos \left(\phi_{\mathrm{j}}\right) \qquad \mathrm{Y}_{\mathrm{i}, \mathrm{j}} :=\sin \left(\theta_{\mathrm{i}}\right) \cdot \sin \left(\phi_{\mathrm{j}}\right) \qquad \mathrm{z}_{\mathrm{i}, \mathrm{j}} :=\cos \left(\theta_{\mathrm{i}}\right)
\nonumber \]
Next, the coordinates of a quantum qubit are calculated and displayed on the Bloch sphere as a white dot. As the polar and azmuthal angles are changed, you will need to rotate the figure to see where the white dot is on the surface of the Bloch sphere.
\[
\theta 1 :=\frac{\pi}{2} \qquad \phi 1 :=0 \\ \Psi(\theta 1, \phi 1) :=\cos \left(\frac{\theta 1}{2}\right) \cdot\left(\begin{array}{c}{1} \\ {0}\end{array}\right)+\exp (\mathrm{i} \cdot \phi 1) \cdot \sin \left(\frac{\theta 1}{2}\right) \cdot\left(\begin{array}{l}{0} \\ {1}\end{array}\right) \quad \Psi(\theta 1, \phi 1)=\left(\begin{array}{l}{0.707} \\ {0.707}\end{array}\right) \\ \mathrm{XX}_{\mathrm{i}, \mathrm{j}}=\sin (\theta 1) \cdot \cos (\phi 1) \qquad \mathrm{YY}_{\mathrm{i}, \mathrm{j}} :=\sin (\theta 1) \cdot \sin (\phi 1) \qquad \mathrm{ZZ}_{\mathrm{i}, \mathrm{j}} :=\cos (\theta 1)
\nonumber \]