# 17.8: Partition Functions can be Decomposed into Partition Functions of Each Degree of Freedom

$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

From the previous sections, the partition function for a system of $$N$$ indistinguishable and independent molecules is:

$Q(N,V,\beta) = \dfrac{\sum_i{e^{-\beta E_i}}}{N!} \label{ID1}$

And the average energy of the system is:

$\langle E \rangle = kT^2 \left(\dfrac{\partial \ln{Q}}{\partial T}\right) \label{ID2}$

We can combine these two equations to obtain:

$\begin{split} \langle E \rangle &= kT^2 \left(\dfrac{\partial \ln{Q}}{\partial T}\right)_{N,V} \\ &= NkT^2 \left(\dfrac{\partial \ln{q}}{\partial T}\right)_V \\ &= N\sum_i{\epsilon_i \dfrac{e^{-\epsilon_i/kT}}{q(V,T)}} \end{split} \label{ID3}$

The average energy is equal to:

$\langle E \rangle = N \langle \epsilon \rangle \label{aveE}$

where $$\langle \epsilon \rangle$$ is the average energy of a single particle. If we compare Equation $$\ref{ID2}$$ with Equation $$\ref{ID2}$$, we can see:

$\langle \epsilon \rangle = \sum_i{\epsilon_i \dfrac{e^{-\epsilon_i/kT}}{q(V,T)}} \nonumber$

The probability that a particle is in state $$i$$, $$\pi_i$$, is given by:

$\langle \epsilon \rangle = \dfrac{e^{-\epsilon_i/kT}}{q(V,T)} = \dfrac{e^{-\epsilon_i/kT}}{\sum_i{e^{-\epsilon_i/kT}}} \nonumber$

The energy of a particle is a sum of the energy of each degree of freedom for that particle. In the case of a molecule, the energy is:

$\epsilon = \epsilon_\text{trans} + \epsilon_\text{rot} + \epsilon_\text{vib} + \epsilon_\text{elec} \nonumber$

The molecular partition function is the product of the degree of freedom partition functions:

$q(V,T) = q_\text{trans} q_\text{rot} q_\text{vib} q_\text{elec} \nonumber$

The partition function for each degree of freedom follows the same is related to the Boltzmann distribution. For example, the vibrational partition function is:

$q_\text{vib} = \sum_i{e^{-\epsilon_i/kT}} \nonumber$

The average energy of each degree of freedom follows the same pattern as before. For example, the average vibrational energy is:

$\langle \epsilon_\text{vib} \rangle = kT^2\dfrac{\partial \ln{q_\text{vib}}}{\partial t} = -\dfrac{\partial \ln{q_\text{vib}}}{\partial \beta} \nonumber$

17.8: Partition Functions can be Decomposed into Partition Functions of Each Degree of Freedom is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Jerry LaRue.