Skip to main content
Chemistry LibreTexts

6.24: pH and pOH, pKa and pKb

  • Page ID
    408930
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    pH and pOH

    The concentration of ions in solution can be quite high- and can differ from solution to solution by many orders of magnitude. For this reason, it is useful to refer to a logarithmic scale. We will use an operator \(\mathrm{p}\) defined to be the negative \(\log\) (base 10) of the value it precedes: for example, \(\mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right]\).

    The \(\mathrm{pH}\) of a solution is a measure of how acidic it is: a \(\mathrm{pH}\) of 7 indicates the solution is neutral, while lower values are acidic and higher values are basic. The compliment to \(\mathrm{pH}\) is \(\mathrm{pOH}\), a measure of the concentration of hydroxide ions: \(\mathrm{pOH}=-\log _{10}\left[\mathrm{OH}^{-}\right]\). A high \(\mathrm{pOH}\) corresponds to an acidic solution, while a low \(\mathrm{pOH}\) indicates a basic solution. \(\mathrm{pH}\) and \(\mathrm{pOH}\) are related as

    \(p H+p O H=14\)

    Example: The \(\mathrm{K}_a\) for nitrous acid, \(\mathrm{HNO}_2\), is \(4.0 \times 10^{-4}\). Determine the \(\mathrm{pH}\) and \(\mathrm{pOH}\) of \(0.1 \mathrm{M}\) nitrous acid. 

    Answer

    First, let's write an expression for the dissociation of nitrous acid:

    \[\mathrm{HNO}_2(a q)+\mathrm{H}_2 \mathrm{O}(l) \rightarrow \mathrm{NO}_2^{-}(a q)+\mathrm{H}_3 \mathrm{O}^{+}(a q) \nonumber\]

    Then, we can write an expression for the acid dissociation constant:

    \[K_a=\dfrac{\left[\mathrm{NO}_2^{-}\right]\left[\mathrm{H}_3 \mathrm{O}^{+}\right]}{\left[\mathrm{HNO}_2\right]} \nonumber\]

    To find the \(\mathrm{pH}\), we need to determine the concentration of \(\mathrm{H}^{+}\) ion (equivalently \(\mathrm{H}_3 \mathrm{O}^{+}\)). The initial concentration of nitrous acid is \(0.1 \mathrm{M}\): we can set up an ICE table to solve for the final concentrations:

    \(\begin{array}{c|c|c|c} 
    & {\left[\mathrm{HNO}_2\right]} & {\left[\mathrm{NO}_2^{-}\right]} & {\left[\mathrm{H}_3 \mathrm{O}^{+}\right]} \\
    \hline \hline \text { Initial } & 0.1 & 0 \mathrm{M} & 0 \mathrm{M} \\
    \text { Change } & -x \mathrm{M} & +x \mathrm{M} & +x \mathrm{M} \\
    \text { Final } & 0.1-x \mathrm{M} & x \mathrm{M} & x \mathrm{M}
    \end{array}\)

    Plugging in the final values to the expression for \(\mathrm{K}_a\), we can solve for \(x\) to find the concentration of hydrogen ions:

    \begin{gathered}
    K_a=\dfrac{\left[\mathrm{NO}_2^{-}\right]\left[\mathrm{H}_3 \mathrm{O}^{+}\right]}{\left[\mathrm{HNO}_2\right]}=\frac{x^2}{0.1-x}=4.0 \times 10^{-4} \\
    x^2=4.0 \times 10^{-5}-x\left(4.0 \times 10^{-4}\right) \\
    x^2+x\left(4.0 \times 10^{-4}\right)-4.0 \times 10^{-5}=0 \\
    {\left[\mathrm{H}_3 \mathrm{O}^{+}\right]=x \approx 0.006}
    \end{gathered}

    Finally, we can solve for \(\mathrm{pH}\) :

    \[p H=-\log \left[H^{+}\right]=-\log \left[H_3 O^{+}\right]=-\log (0.006)=2.21 \nonumber\]

    The value of \(\mathrm{pOH}\) follows using the relation that \(\mathrm{pH}+\mathrm{pOH}=14\) :

    \[p O H=14-p H=11.79 \nonumber\]

    Example: What is the \(\mathrm{pH}\) of \(0.04 \mathrm{M} \mathrm{HI}\), which is a strong acid?

    Answer

    The key phrase to solving this problem is 'strong acid.' When we have a strong acid, we don't need an acid dissociation constant because we know it fully dissociates! Here, the concentration of hydrogen ion simply equals the initial concentration of acid:

    \[p H=-\log \left[H^{+}\right]=-\log (0.04)=1.4 \nonumber\]

    \(\mathbf{p K}_a\) and \(\mathbf{p K}_b\)

    In the same way that it is convenient to express the concentration of hydronium or hydroxide ions as a logarithmic value, it can be useful to express the acid and base dissociation constants as \(\mathrm{pK}_a\) and \(\mathrm{pK}_b\), since they can again differ by many orders of magnitude between species. The definition of \(\mathrm{p}\) as an operator remains the same, so \(\mathrm{pK}_a=-\log _{10}\left(\mathrm{~K}_a\right)\) and \(\mathrm{pK}_b=-\log _{10}\left(\mathrm{~K}_b\right)\).

    Example: For an \(0.2 \mathrm{M}\) solution of pyridine \(\left(\mathrm{C}_5 \mathrm{H}_5 \mathrm{~N}\right)\), a base with a \(\mathrm{pH}\) of \(9.28\), determine the \(\mathrm{pK}_b\).

    Answer

    First, let's write a dissociation equation for pyridine:

    \[C_5 H_5 N(a q)+H_2 O(l) \rightarrow C_5 H_5 N^{+}(a q)+O H^{-} \nonumber\]

    Then, we can convert the \(\mathrm{pH}\) to a \(\mathrm{pOH}\), since pyridine is a base:

    \[p O H=14-p H=14-9.28=4.72 \nonumber\]

    Next, we can convert the \(\mathrm{pOH}\) into a concentration of hydroxide ions:

    \begin{gathered}
    p O H=-\log _{10}\left[O H^{-}\right] \\
    {\left[O H^{-}\right]=10^{-p O H}=10^{-4.72}=1.89 \times 10^{-5}}
    \end{gathered}

    Then, we can write an expression for the base dissociation constant:

    \[K_b=\dfrac{\left[C_5 H_5 \mathrm{NH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[C_5 \mathrm{H}_5 \mathrm{~N}\right]} \nonumber\]

    And write our ICE table: Plugging these final values into the expression from above for \(\mathrm{K}_b\):

    \(\begin{array}{c|c|c|c} 
    & {\left[\mathrm{C}_5 \mathrm{H}_5 \mathrm{~N}\right]} & {\left[\mathrm{C}_5 \mathrm{H}_5 \mathrm{NH}^{+}\right]} & {\left[\mathrm{OH}^{-}\right]} \\
    \hline \hline \text { Initial } & 0.2 & 0 \mathrm{M} & 0 \mathrm{M} \\
    \text { Change } & -x \mathrm{M} & +x \mathrm{M} & +x \mathrm{M} \\
    \text { Final } & 0.2-x \mathrm{M} & x \mathrm{M} & x \mathrm{M}
    \end{array}\)

    \[K_b=\dfrac{x^2}{0.2-x} \nonumber\]

    Above, we determined the value of \(x=\left[\mathrm{OH}^{-}\right]=1.89 \times 10^{-5}\), so we can simply plug in to solve for \(\mathrm{K}_b\) :

    \[K_b=\dfrac{\left(1.89 \times 10^{-5}\right)^2}{0.2-1.89 \times 10^{-5}}=1.8 \times 10^{-9} \nonumber\]

    Finally,

    \[p K_b=-\log \left(K_b\right)=8.74 \nonumber\]


    6.24: pH and pOH, pKa and pKb is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?