Skip to main content
Chemistry LibreTexts

6.23: Acids, Bases, and Dissociation

  • Page ID
    408929
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Acids and bases

    In lecture, we talked about Brønsted-Lowry acids and bases as well as Lewis acids and bases. The BrønstedLowry definition of acids and bases is more narrow: a Brønsted-Lowry acid is a proton donor, while a Brønsted-Lowry base is a proton acceptor: to be clear here, the proton is a hydrogen ion, \(\mathrm{H}^{+}\). More generally, a Lewis acid is an electron acceptor, while a Lewis base is an electron donor. Water is amphoteric: it can be either an acid or a base. Water serves as the solvent for many acid-base reactions. Consider adding a generic acid to water:

    \[H A(a q)+H_2 O(l) \rightarrow H_3 O^{+}(a q)+A^{-}(a q) \nonumber\]

    Similarly, consider adding a generic base to water:

    \[B^{-}(a q)+H_2 O(l) \rightarrow H B(a q)+O^{-}(a q) \nonumber\]

    These serve as prototypical acid-base reactions: we can identify conjugate acid-base pairs to relate species that lost/gained a proton (or electron) on either side of the reaction.

    Example: Identify the conjugate acid-base pairs in the following reaction:

    \(\mathrm{CH}_3\mathrm{CO}_2\mathrm{H} (aq) + \mathrm{NH}_3 (aq) \rightarrow \mathrm{CH}_3\mathrm{CO}_2^{-} + \mathrm{NH}_4^{+}\)

    Answer

    Screen Shot 2022-09-08 at 1.21.39 AM.png

    Dissociation

    In the same way we wrote a general equilibrium constant, we can write an acid/base specific equivalent. The equilibrium constant for our acid dissociation reaction above would be

    \(K_{e q}=\dfrac{\left[\mathrm{H}_3 \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{\left[\mathrm{H}_2 \mathrm{O}\right][\mathrm{HA}]}\)

    However, since the water is acting as a solvent and is present in excess, it has a constant concentration: we therefore define the acid constant as

    \(K_a=K_{e q}\left[H_2 O\right]=\dfrac{\left[H_3 O^{+}\right]\left[A^{-}\right]}{[H A]}\)

    Similarly, the base dissocation constant is

    \(K_b=\dfrac{[H B]\left[O H^{-}\right]}{[B-]}\)

    The stronger the acid or base, the more readily it dissolves in solution, and the greater the magnitude of \(K_a\) or \(K_b\). There are only a few strong acids- acids that fully dissociate into their constituent ions. These include \(\mathrm{HCl}, \mathrm{HBr}, \mathrm{HI}, \mathrm{HNO}_3, \mathrm{HClO}_3, \mathrm{HCLO}_4\), and \(\mathrm{H}_2 \mathrm{SO}_4\). The strong bases are mostly alkali salts, including \(\mathrm{LiOH}, \mathrm{NaOH}, \mathrm{KOH}, \mathrm{RbOH}, \mathrm{CsOH}, \mathrm{Ca}(\mathrm{OH})_2, \mathrm{Sr}(\mathrm{OH})_2, \mathrm{Ba}(\mathrm{OH})_2\). Of course, the strength of an acid or base is related to its bond energy: polar acids with big differences in electronegativity have a low bond energy rapidly dissociate when placed in water, for example.

    Example: Write an expression for the dissociation and for the acid or base dissociation constants for these acids \(\left(\mathrm{HF}, \mathrm{CH}_3 \mathrm{CO}_2 \mathrm{H}\right)\) and bases \(\left(\mathrm{NH}_3, \mathrm{NaOH}\right)\).

    Answer

    Hydrofluoric acid, \(\mathrm{HF}\), is a strong acid. In water, the proton dissociates:

    \[H F(a q)+H_2 O(l) \rightarrow H_3 O^{+}(a q)+F^{-}(a q) \nonumber\]

    Its acid dissociation constant is

    \[K_a=\dfrac{\left[\mathrm{H}_3 \mathrm{O}^{+}\right]\left[\mathrm{F}^{-}\right]}{[H F]} \nonumber\]

    We can take a similar approach for acetic acid, a weak acid.

    \[\mathrm{CH}_3 \mathrm{CO}_2 \mathrm{H}(a q)+\mathrm{H}_2 \mathrm{O}(l) \rightarrow \mathrm{H}_3 \mathrm{O}^{+}(a q)+\mathrm{CH}_3 \mathrm{CO}_2^{-}(a q) \nonumber\]

    The acid dissociation constant is

    \[K_a=\dfrac{\left[\mathrm{H}_3 \mathrm{O}^{+}\right]\left[\mathrm{CH}_3 \mathrm{CO}_2^{-}\right]}{\left[\mathrm{CH}_3 \mathrm{CO}_2 \mathrm{H}\right]} \nonumber\]

    For ammonia, the base gains a proton when placed in water:

    \[\mathrm{NH}_3(a q)+\mathrm{H}_2 \mathrm{O}(l) \rightarrow \mathrm{NH}_4^{+}(a q)+\mathrm{OH}^{-}(a q) \nonumber\]

    The base dissociation constant for ammonia is

    \[K_b=\dfrac{\left[\mathrm{NH}_4^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_3\right]} \nonumber\]

    Finally, sodium hydroxide fully dissociates:

    \[\mathrm{NaOH}(a q)+\mathrm{H}_2 \mathrm{O}(l) \rightarrow \mathrm{Na}^{+}(a q)+\mathrm{OH}^{-}(a q) \nonumber\]

    The base dissociation constant is

    \[K_b=\dfrac{[N a+]\left[\mathrm{OH}^{-}\right]}{[N a O H]} \nonumber\]

    Example: Which of these acids is the strongest? sulfurous acid \(\left(\mathrm{H}_2 \mathrm{SO}_3 ; \mathrm{K}_a=1.54 \times 10^{-2}\right)\), phosphoric \(\operatorname{acid}\left(\mathrm{H}_2 \mathrm{PO}_4^{-} ; \mathrm{K}_a=6.23 \times 10^{-8}\right)\), citric acid \(\left(\mathrm{H}_3 \mathrm{C}_6 \mathrm{H}_5 \mathrm{O}_7 ; \mathrm{K}_a=8.4 \times 10^{-4}\right)\)

    Answer

    Stronger acids have larger acid dissociation constants, so sulfurous acid is stronger than citric acid and phosphoric acid.


    6.23: Acids, Bases, and Dissociation is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?