Skip to main content
Library homepage
Chemistry LibreTexts

10: Device Performance

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    • 10.1: A Simple Test Apparatus to Verify the Photoresponse of Experimental Photovoltaic Materials and Prototype Solar Cells
      One of the problems associated with testing a new unproven photovoltaic material or cell design is that significant processing required in order to create a fully functioning solar cell. If it is desired to screen a wide range of materials or synthetic conditions it can be time consuming (and costly of research funds) to prepare fully functioning devices. In addition, the success of each individual cell may be more dependent on fabrication steps not associated with the variations under study.
    • 10.2: Measuring Key Transport Properties of FET Devices
      As research interests begin to focus on progressively smaller dimensions, the need for nanoscale characterization techniques has seen a steep rise in demand. In addition, the wide scope of nanotechnology across all fields of science has perpetuated the application of characterization techniques to a multitude of disciplines. Dual polarization interferometry (DPI) is an example of a technique developed to solve a specific problem, but was expanded and utilized to characterize fields ranging surfa

    This page titled 10: Device Performance is shared under a CC BY 4.0 license and was authored, remixed, and/or curated by Pavan M. V. Raja & Andrew R. Barron (OpenStax CNX) via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.