Skip to main content
Chemistry LibreTexts

10.10: Additional Resources

  • Page ID
    157681
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The following set of experiments introduce students to the applications of spectroscopy. Experiments are grouped into five categories: UV/Vis spectroscopy, IR spectroscopy, atomic absorption and atomic emission, fluorescence and phosphorescence, and signal averaging.

    UV/Vis Spectroscopy

    • Abney, J. R.; Scalettar, B. A. “Saving Your Students’ Skin. Undergraduate Experiments That Probe UV Protection by Sunscreens and Sunglasses,” J. Chem. Educ. 1998, 75, 757–760.
    • Ainscough, E. W.; Brodie, A. M. “The Determination of Vanillin in Vanilla Extract,” J. Chem. Educ. 1990, 67, 1070–1071.
    • Allen, H. C.; Brauers, T.; Finlayson-Pitts, B. J. “Illustrating Deviations in the Beer-Lambert Law in an Instrumental Analysis Laboratory: Measuring Atmospheric Pollutants by Differential Optical Absorption Spectrometry,” J. Chem. Educ. 1997, 74, 1459–1462.
    • Blanco, M.; Iturriaga, H.; Maspoch, S.; Tarîn, P. “A Simple Method for Spectrophotometric Determination of Two-Components with Overlapped Spectra,” J. Chem. Educ. 1989, 66, 178–180.
    • Bonicamp, J. M.; Martin, K. L.; McBride, G. R.; Clark, R. W. “Beer’s Law is Not a Straight Line: Amplification of Errors by Transformation,” Chem. Educator 1999, 4, 81–88.
    • Bruneau, E.; Lavabre, D.; Levy, G.; Micheau, J. C. “Quantitative Analysis of Continuous-Variation Plots with a Comparison of Several Methods,” J. Chem. Educ. 1992, 69, 833–837.
    • Cappas, C.; Hoffman, N.; Jones, J.; Young, S. “Determination of Concentrations of Species Whose Absorption Bands Overlap Extensively,” J. Chem. Educ. 1991, 68, 300–303.
    • Crisp, P. T.; Eckert, J. M.; Gibson, N. A. “The Determination of Anionic Surfactants in Natural and Waste Waters,” J. Chem. Educ. 1983, 60, 236–238.
    • Dilbeck, C. W.; Ganske, J. A. “Detection of NOx in Automobile Exhaust: An Applied Experiment in Atmospheric/Environmental Chemistry for the General Chemistry Laboratory,” Chem. Educator 2008, 13, 1–5.
    • Domínguez, A., Fernández, A.; González, N.; Iglesias, E.; Montenegro, L. “Determination of Critical Micelle Concentration of Some Surfactants by Three Techniques,” J. Chem. Educ. 1997, 74, 1227– 1231.
    • Gilbert, D. D. “Determining Optimum Spectral Bandwidth,” J. Chem. Educ. 1991, 68, A278– A281.
    • Han, J.; Story, T.; Han, G. “A Spectrophotometric Method for Quantitative Determination of Bromine Using Tris(2-carboxyethyl)phophine,” J. Chem. Educ. 1999, 76, 976–977.
    • Higginbotham, C.; Pike, C. F.; Rice, J, K. “Spectroscopy in Sol-Gel Matricies,” J. Chem. Educ. 1998, 75, 461–464.
    • Hill, Z. D.; MacCarthy, P. “Novel Approach to Job’s Method,” J. Chem. Educ. 1986, 63, 162–167.
    • Ibañez, G. A.; Olivieri, A. C.; Escandar, G. M. “Determination of Equilibrium Constants of Metal Complexes from Spectrophotometric Measurements,” J. Chem. Educ. 1999, 76, 1277–1281.
    • Long, J. R.; Drago, R. S. “The Rigorous Evaluation of Spectrophotometric Data to Obtain an Equilibrium Constant,” J. Chem. Educ. 1982, 59, 1037–1039.
    • Lozano-Calero; D.; Martin-Palomeque, P. “Determination of Phosphorous in Cola Drinks,” J. Chem. Educ. 1996, 73, 1173–1174.
    • Maloney, K. M.; Quiazon, E. M.; Indralingam, R. “Measurement of Iron in Egg Yolk: An Instrumental Analysis Measurement Using Biochemical Principles,” J. Chem. Educ. 2008, 85, 399–400.
    • Mascotti, D. P.; Waner, M. J. “Complementary Spectroscopic Assays for Investigation Protein-Ligand Binding Activity: A Project for the Advanced Chemistry Laboratory,” J. Chem. Educ. 2010, 87, 735– 738.
    • McClain, R. L. “Construction of a Photometer as an Instructional Tool for Electronics and Instrumentation,” J. Chem. Educ. 2014, 91, 747–750.
    • McDevitt, V. L.; Rodriquez, A.; Williams, K. R. “Analysis of Soft Drinks: UV Spectrophotometry, Liquid Chromatography, and Capillary Electrophoresis,” J. Chem. Educ. 1998, 75, 625–629.
    • Mehra, M. C.; Rioux, J. “An Analytical Chemistry Experiment in Simultaneous Spectrophotometric Determination of Fe(III) and Cu(II) with Hexacyanoruthenate(II) Reagent,” J. Chem. Educ. 1982, 59, 688–689.
    • Mitchell-Koch, J. T.; Reid, K. R.; Meyerhoff, M. E. “Salicylate Detection by Complexation with Iron(III) and Optical Absorbance Spectroscopy,” J. Chem. Educ. 2008, 85, 1658–1659.
    • Msimanga, H. Z.; Wiese, J. “Determination of Acetaminophen in Analgesics by the Standard Addition Method: A Quantitative Analytical Chemistry Laboratory,” Chem. Educator 2005, 10, 1–7.
    • Örstan, A.; Wojcik, J. F. “Spectroscopic Determination of Protein-Ligand Binding Constants,” J. Chem. Educ. 1987, 64, 814–816.
    • Pandey, S.; Powell, J. R.; McHale, M. E. R.; Acree Jr., W. E. “Quantitative Determination of Cr(III) and Co(II) Using a Spectroscopic H-Point Standard Addition,” J. Chem. Educ. 1997, 74, 848–850.
    • Parody-Morreale, A.; Cámara-Artigas, A.; Sánchez-Ruiz, J. M. “Spectrophotometric Determination of the Binding Constants of Succinate and Chloride to Glutamic Oxalacetic Transaminase,” J. Chem. Educ. 1990, 67, 988–990.
    • Ravelo-Perez, L. M.; Hernández-Borges, J.; Rodríguez-Delgado, M. A.; Borges-Miquel, T. “Spectrophotometric Analysis of Lycopene in Tomatoes and Watermelons: A Practical Class,” Chem. Educator 2008, 13, 1–3.
    • Russell, D. D.; Potts, J.; Russell, R. M.; Olson, C.; Schimpf, M. “Spectroscopic and Potentiometric Investigation of a Diprotic Acid: An Experimental Approach to Understanding Alpha Functions,” Chem. Educator 1999, 4, 68–72.
    • Smith, E. T.; Matachek, J. R. “A Colorful Investigation of a Diprotic Acid: A General Chemistry Laboratory Exercise,” Chem. Educator 2002, 7, 359–363
    • Tello-Solis, S. R. “Thermal Unfolding of Lysozyme Studied by UV Difference Spectroscopy,” Chem. Educator 2008, 13, 16–18.
    • Tucker, S.; Robinson, R.; Keane, C.; Boff, M.; Zenko, M.; Batish, S.; Street, Jr., K. W. “Colorimetric Determination of pH,” J. Chem. Educ. 1989, 66, 769–771.
    • Vitt, J. E. “Troubleshooting 101: An Instrumental Analysis Experiment,” J. Chem. Educ. 2008, 85, 1660–1662.
    • Williams, K. R.; Cole, S. R.; Boyette, S. E.; Schulman, S. G. “The Use of Dristan Nasal Spray as the Unknown for Simultaneous Spectrophotometric Analysis of a Mixture,” J. Chem. Educ. 1990, 67, 535.
    • Walmsley, F. “Aggregation in Dyes: A Spectrophotometric Study,” J. Chem. Educ. 1992, 69, 583. Wells, T. A. “Construction of a Simple Myoglobin-Based Optical Biosensor,” Chem. Educator 2007, 12, 1–3.
      Yarnelle, M. K.; West, K. J. “Modification of an Ultraviolet Spectrophotometric Determination of the Active Ingredients in APC Tablets,” J. Chem. Educ. 1989, 66, 601–602.

    IR Spectroscopy

    • Dragon, S.; Fitch, A. “Infrared Spectroscopy Determination of Lead Binding to Ethylenediaminetetraacetic Acid,” J. Chem. Educ. 1998, 75, 1018–1021.
    • Frohlich, H. “Using Infrared Spectroscopy Measurements to Study Intermolecular Hydrogen Bonding,” J. Chem. Educ. 1993, 70, A3–A6.
    • Garizi, N.; Macias, A.; Furch, T.; Fan, R.; Wagenknecht, P.; Singmaster, K. A. “Cigarette Smoke Analysis Using an Inexpensive Gas-Phase IR Cell,” J. Chem. Educ. 2001, 78, 1665–1666.
    • Indralingam, R.; Nepomuceno, A. I. “The Use of Disposable IR Cards for Quantitative Analysis Using an Internal Standard,” J. Chem. Educ. 2001, 78, 958–960.
    • Mathias, L. J.; Hankins, M. G.; Bertolucci, C. M.; Grubb, T. L.; Muthiah, J. “Quantitative Analysis by FTIR: Thin Films of Copolymers of Ethylene and Vinyl Acetate,” J. Chem. Educ. 1992, 69, A217– A219.
    • Schuttlefield, J. D.; Grassian, V. H. “ATR-FTIR Spectroscopy in the Undergraduate Chemistry Laboratory. Part I: Fundamentals and Examples,” J. Chem. Educ. 2008, 85, 279–281.
    • Schuttlefield, J. D.; Larsen, S. C.; Grassian, V. H. “ATR-FTIR Spectroscopy in the Undergraduate Chemistry Laboratory. Part II: A Physical Chemistry Laboratory Experiment on Surface Adsorption,” J. Chem. Educ. 2008, 85, 282–284.
    • Seasholtz, M. B.; Pence, L. E.; Moe Jr., O. A. “Determination of Carbon Monoxide in Automobile Exhaust by FTIR Spectroscopy,” J. Chem. Educ. 1988, 65, 820–823.

    Atomic Absorption and Atomic Emission Spectroscopy

    • Amarasiriwardena, D. “Teaching analytical atomic spectroscopy advances in an environmental chemistry class using a project-based laboratory approach: investigation of lead and arsenic distributions in a lead arsenate contaminated apple orchard,” Anal. Bioanal. Chem. 2007, 388, 307–314.
    • Bazzi, A.; Bazzi, J.; Deng, Y.’ Ayyash, M. “Flame Atomic Absorption Spectroscopic Determination of Iron in Breakfast Cereals: A Validated Experiment for the Analytical Chemistry Laboratory,” Chem. Educator 2014, 19, 283–286.
    • Buffen, B. P. “Removal of Heavy Metals from Water: An Environmentally Significant Atomic Absorption Spectrometry Experiment,” J. Chem. Educ. 1999, 76, 1678–1679.
    • Dockery, C. R.; Blew, M. J.; Goode, S. R. “Visualizing the Solute Vaporization Interference in Flame Atomic Absorption Spectroscopy,” J. Chem. Educ. 2008, 85, 854–858.
    • Donas, M. K.; Whissel, G.; Dumas, A.; Golden, K. “Analyzing Lead Content in Ancient Bronze Coins by Flame Atomic Absorption Spectroscopy,” J. Chem. Educ. 2009, 86, 343–346.
    • Finch, L. E.; Hillyer, M. M.; Leopold, M. C. “Quantitative Analysis of Heavy Metals in Children’s Toys and Jewelry: A Multi-Instrument, Multitechnique Exercise in Analytical Chemistry and Public Health,” J. Chem. Educ. 2015, 92, 849–854.
    • Garrison, N.; Cunningham, M.; Varys, D.; Schauer, D. J. “Discovering New Biosorbents with Atomic Absorption Spectroscopy: An Undergraduate Laboratory Experiment,” J. Chem. Educ. 2014, 91, 583–585.
    • Gilles de Pelichy, L. D.; Adams, C.; Smith, E. T. “Analysis of the Essential Nutrient Strontium in Marine Aquariums by Atomic Absorption Spectroscopy,” J. Chem. Educ. 1997, 74, 1192–1194.
    • Hoskins, L. C.; Reichardt, P. B.; Stolzberg, R. J. “Determination of the Extraction Constant for Zinc Pyrrolidinecarbodithioate,” J. Chem. Educ. 1981, 58, 580–581.
    • Kooser, A. S.; Jenkins, J. L.; Welch, L. E. “Inductively Coupled Plasma-Atomic Emission Spectroscopy: Two Laboratory Activities for the Undergraduate Instrumental Analysis Course,” J. Chem. Educ. 2003, 80, 86–88.
    • Kostecka, K. S. “Atomic Absorption Spectroscopy of Calcium in Foodstuffs in Non-Science-Major Courses,” J. Chem. Educ. 2000, 77, 1321–1323.
    • Kristian, K. E.; Friedbauer, S.; Kabashi, D.; Ferencz, K. M.; Barajas, J. C.; O’Brien, K. “A Simplified Digestion Protocol for the Analysis of Hg in Fish by Cold Vapor Atomic Absorption Spectroscopy,” J. Chem. Educ. 2015, 92, 698–702.
    • Lehman, T. A.; Everett, W. W. “Solubility of Lead Sulfate in Water and in Sodium Sulfate Solutions,” J. Chem. Educ. 1982, 59, 797.
    • Markow, P. G. “Determining the Lead Content of Paint Chips,” J. Chem. Educ. 1996, 73, 178–179.
    • Masina, M. R.; Nkosi, P. A.; Rasmussen, P. W.; Shelembe, J. S.; Tyobeka, T. E. “Determination of Metal Ions in Pineapple Juice and Effluent of a Fruit Canning Industry,” J. Chem. Educ. 1989, 66, 342–343.
    • Quigley, M. N. “Determination of Calcium in Analgesic Tablets using Atomic Absorption Spectrophotometry,” J. Chem. Educ. 1994, 71, 800.
    • Quigley, M. N.; Vernon, F. “Determination of Trace Metal Ion Concentrations in Seawater,” J. Chem. Educ. 1996, 73, 671–675.
    • Quigley, M. N.; Vernon, F. “A Matrix Modification Experiment for Use in Electrothermal Atomic Absorption Spectrophotometry,” J. Chem. Educ. 1996, 73, 980–981.
    • Palkendo, J. A.; Kovach, J.; Betts, T. A. “Determination of Wear Metals in Used Motor Oil by Flame Atomic Absorption Spectroscopy,” J. Chem. Educ. 2014, 91, 579–582.
    • Rheingold, A. L.; Hues, S.; Cohen, M. N. “Strontium and Zinc Content in Bones as an Indication of Diet,” J. Chem. Educ. 1983, 60, 233–234.
    • Rocha, F. R. P.; Nóbrega, J. A. “Effects of Solution Physical Properties on Copper and Chromium Signals in Flame Atomic Absorption Spectrometry,” J. Chem. Educ. 1996, 73, 982–984.

    Fluorescence and Phosphorescence Spectroscopy

    • Bigger, S. W.; Bigger, A. S.; Ghiggino, K. P. “FluSpec: A Simulated Experiment in Fluorescence Spectroscopy,” J. Chem. Educ. 2014, 91, 1081–1083.
    • Buccigross, J. M.; Bedell, C. M.; Suding-Moster, H. L. “Fluorescent Measurement of TNS Binding to Calmodulin,” J. Chem. Educ. 1996, 73, 275–278.
    • Henderleiter, J. A.; Hyslopo, R. M. “The Analysis of Riboflavin in Urine by Fluorescence,” J. Chem. Educ. 1996, 73, 563–564.
    • Koenig, M. H.; Yi, E. P.; Sandridge, M. J.; Mathew, A. S.; Demas, J. N. “Open-Box Approach to Measuring Fluorescence Quenching Using an iPad Screen and Digital SLR Camera,” J. Chem. Educ. 2015, 92, 310–316.
    • Lagoria, M. G.; Román, E. S. “How Does Light Scattering Affect Luminescence? Fluorescence Spectra and Quantum Yields in the Solid Form,” J. Chem. Educ. 2002, 79, 1362–1367.
    • Richardson, D. P.; Chang, R. “Lecture Demonstrations of Fluorescence and Phosphorescence,” Chem. Educator 2007, 12, 272–274.
    • Seixas de Melo, J. S.; Cabral, C.; Burrows, H. D. “Photochemistry and Photophysics in the Laboratory. Showing the Role of Radiationless and Radiative Decay of Excited States,” Chem. Educator 2007, 12, 1–6.
    • Sheffield, M. C.; Nahir, T. M. “Analysis of Selenium in Brazil Nuts by Microwave Digestion and Fluorescence Detection,” J. Chem. Educ. 2002, 79, 1345–1347.

    Signal Averaging

    • Blitz, J. P.; Klarup, D. G. “Signal-to-Noise Ratio, Signal Processing, and Spectral Information in the Instrumental Analysis Laboratory,” J. Chem. Educ. 2002, 79, 1358–1360.
    • Stolzberg, R. J. “Introduction to Signals and Noise in an Instrumental Method Course,” J. Chem. Educ. 1983, 60, 171–172.
    • Tardy, D. C. “Signal Averaging. A Signal-to-Noise Enhancement Experiment for the Advanced Chemistry Laboratory,” J. Chem. Educ. 1986, 63, 648–650.

    The following sources provide additional information on spectroscopy in the following areas: general spectroscopy, Beer’s law, instrumentation, Fourier transforms, IR spectroscopy, atomic asorption and emission, luminescence, and applications.

    General Spectroscopy

    • Ball, D. W. “Units! Units! Units!” Spectroscopy 1995, 10(8), 44–47.
    • A History of Analytical Chemistry, Laitinen, H. A.; Ewing, G. W, Eds. The Division of Analytical Chemistry of the American Chemical Society: Washington, D. C., 1977, p103–243.
    • Ingle, J. D.; Crouch, S. R. Spectrochemical Analysis, Prentice Hall, Englewood Cliffs, N. J.; 1988.
    • Macomber, R. S. “A Unifying Approach to Absorption Spectroscopy at the Undergraduate Level,” J. Chem. Educ. 1997, 74, 65–67.
    • Orchin, M.; Jaffe, H. H. Symmetry, Orbitals and Spectra, Wiley-Interscience: New York, 1971.
    • Thomas, N. C. “The Early History of Spectroscopy,” J. Chem. Educ. 1991, 68, 631–633.

    Beer’s Law

    • Lykos, P. “The Beer-Lambert Law Revisited: A Development without Calculus,” J. Chem. Educ. 1992, 69, 730–732.
    • Ricci, R. W.; Ditzler, M. A.; Nestor, L. P. “Discovering the Beer-Lambert Law,” J. Chem. Educ. 1994, 71, 983–985.

    Instrumentation

    • Altermose, I. R. “Evolution of Instrumentation for UV-Visible Spectrophotometry: Part I,” J. Chem. Educ. 1986, 63, A216–A223.

    • Altermose, I. R. “Evolution of Instrumentation for UV-Visible Spectrophotometry: Part II,” J. Chem. Educ. 1986, 63, A262–A266.
    • Grossman, W. E. L. “The Optical Characteristics and Production of Diffraction Gratings,” J. Chem. Educ. 1993, 70, 741–748.
    • Jones, D. G. “Photodiode Array Detectors in UV-Vis Spectroscopy: Part I,” Anal. Chem. 1985, 57,1057A–1073A.
    • Jones, D. G. “Photodiode Array Detectors in UV-Vis Spectroscopy: Part II,” Anal. Chem. 1985, 11, 1207A–1214A.
    • Palmer, C. “Diffraction Gratings,” Spectroscopy, 1995, 10(2), 14–15.

    Fourier Transforms

    • Bracewell, R. N. “The Fourier Transform,” Sci. American 1989, 260(6), 85–95.
    • Glasser, L. “Fourier Transforms for Chemists: Part I. Introduction to the Fourier Transform,” J. Chem. Educ. 1987, 64, A228–A233.
    • Glasser, L. “Fourier Transforms for Chemists: Part II. Fourier Transforms in Chemistry and Spectroscopy,” J. Chem. Educ. 1987, 64, A260–A266.
    • Glasser, L. “Fourier Transforms for Chemists: Part III. Fourier Transforms in Data Treatment,” J. Chem. Educ. 1987, 64, A306–A313.
    • Graff, D. K. “Fourier and Hadamard: Transforms in Spectroscopy,” J. Chem. Educ. 1995, 72, 304–309.
    • Griffiths, P. R. Chemical Fourier Transform Spectroscopy, Wiley-Interscience: New York, 1975.
    • Transform Techniques in Chemistry, Griffiths, P. R. Ed., Plenum Press: New York, 1978.
    • Perkins, W. E. “Fourier Transform Infrared Spectroscopy: Part I. Instrumentation,” J. Chem. Educ. 1986, 63, A5–A10.
    • Perkins, W. E. “Fourier Transform Infrared Spectroscopy: Part II. Advantages of FT-IR,” J. Chem. Educ. 1987, 64, A269–A271.
    • Perkins, W. E. “Fourier Transform Infrared Spectroscopy: Part III. Applications,” J. Chem. Educ. 1987, 64, A296–A305.
    • Strong III, F. C. “How the Fourier Transform Infrared Spectrophotometer Works,” J. Chem. Educ. 1979, 56, 681–684.

    IR Spectroscopy.

    • Optical Spectroscopy: Sampling Techniques Manual, Harrick Scientific Corporation: Ossining, N. Y., 1987.
    • Leyden, D. E.; Shreedhara Murthy, R. S. “Surface-Selective Sampling Techniques in Fourier Transform Infrared Spectroscopy,” Spectroscopy 1987, 2(2), 28–36.
    • Porro, T. J.; Pattacini, S. C. “Sample Handling for Mid-Infrared Spectroscopy, Part I: Solid and Liquid Sampling,” Spectroscopy 1993, 8(7), 40–47.
    • Porro, T. J.; Pattacini, S. C. “Sample Handling for Mid-Infrared Spectroscopy, Part II: Specialized Techniques,” Spectroscopy 1993, 8(8), 39–44.

    Atomic Absorption and Emission

    • Blades, M. W.; Weir, D. G. “Fundamental Studies of the Inductively Coupled Plasma,” Spectroscopy 1994, 9, 14–21.
    • Greenfield, S. “Invention of the Annular Inductively Coupled Plasma as a Spectroscopic Source,” J. Chem. Educ. 2000, 77, 584–591.
    • Hieftje, G. M. “Atomic Absorption Spectrometry - Has it Gone or Where is it Going?” J. Anal. At. Spectrom. 1989, 4, 117–122.
    • Jarrell, R. F. “A Brief History of Atomic Emission Spectrochemical Analysis, 1666–1950,” J. Chem. Educ. 2000, 77, 573–576
    • Koirtyohann, S. R. “A History of Atomic Absorption Spectrometry From an Academic Perspective,”Anal. Chem. 1991, 63, 1024A–1031A.
    • L’Vov, B. V. “Graphite Furnace Atomic Absorption Spectrometry,” Anal. Chem. 1991, 63, 924A–931A.
    • Slavin, W. “A Comparison of Atomic Spectroscopic Analytical Techniques,” Spectroscopy, 1991, 6, 16–21.
    • Van Loon, J. C. Analytical Atomic Absorption Spectroscopy, Academic Press: New York, 1980.
    • Walsh, A. “The Development of Atomic Absorption Methods of Elemental Analysis 1952–1962,” Anal. Chem. 1991, 63, 933A–941A.
    • Welz, B. Atomic Absorption Spectroscopy, VCH: Deerfield Beach, FL, 1985.

    Luminescence Spectroscopy

    • Guilbault, G. G. Practical Fluorescence, Decker: New York, 1990.
    • Schenk, G. “Historical Overview of Fluorescence Analysis to 1980,” Spectroscopy 1997, 12, 47–56.
    • Vo-Dinh, T. Room-Temperature Phosphorimetry for Chemical Analysis, Wiley-Interscience: New York, 1984.
    • Winefordner, J. D.; Schulman, S. G.; O’Haver, T. C. Luminescence Spectroscopy in Analytical Chemistry, Wiley-Interscience: New York, 1969.

    Applications

    • Trace Analysis and Spectroscopic Methods for Molecules, Christian, G. D.; Callis, J. B. Eds., Wiley-Interscience: New York, 1986.
    • Vandecasteele, C.; Block, C. B. Modern Methods for Trace Element Determination, Wiley: Chichester, England, 1994.
    • Skoog, D. A.; Holler, F. J.; Nieman, T. A. Principles of Instrumental Analysis, Saunders: Philadelphia, 1998.
    • Van Loon, J. C. Selected Methods of Trace Metal Analysis: Biological and Environmental Samples, Wiley- Interscience: New York, 1985.

    Gathered here are resources and experiments for analyzing multicomponent samples using mathematical techniques not covered in this textbook.

    • Aberasturi, F.; Jimenez, A. I.; Jimenez, F.; Arias, J. J. “UV-Visible First-Derivative Spectrophotometry Applied to an Analysis of a Vitamin Mixture,” J. Chem. Educ. 2001, 78, 793–795.
    • Afkhami, A.; Abbasi-Tarighat, M.; Bahram, M.; Abdollahi, H. “A new strategy for solving matrix effect in multivariate calibration standard addition data using combination of H-point curve isolation and H-point standard addition methods,” Anal. Chim. Acta 2008, 613, 144–151.
    • Brown, C. W.; Obremski, R. J. “Multicomponent Quantitative Analysis,” Appl. Spectrosc. Rev. 1984, 20, 373–418.
    • Charles, M. J.; Martin, N. W.; Msimanga, H. Z. “Simultaneous Determination of Aspirin, Salicylamide, and Caffeine in Pain Relievers by Target Factor Analysis,” J. Chem. Educ. 1997, 74, 1114–1117.
    • Dado, G.; Rosenthal, J. “Simultaneous Determination of Cobalt, Copper, and Nickel by Multivariate Linear Regression,” J. Chem. Educ. 1990, 67, 797–800.
    • DiTusa, M. R.; Schilt, A. A. “Selection of Wavelengths for Optimum Precision in Simultaneous Spectrophotometric Determinations,” J. Chem. Educ. 1985, 62, 541–542.
    • Gómez, D. G.; de la Peña, A. M.; Mansilla, A. E.; Olivieri, A. C. “Spectrophotometric Analysis of Mixtures by Classical Least-Squares Calibration: An Advanced Experiment Introducing MATLAB,” Chem. Educator 2003, 8, 187–191.
    • Harvey, D. T.; Bowman, A. “Factor Analysis of Multicomponent Samples,” J. Chem. Educ. 1990, 67, 470–472.
    • Lucio-Gutierrez, J. R.; Salazar-Cavazos, M. L.; de Torres, N. W. “Chemometrics in the Teaching Lab. Quantification of a Ternary Mixture of Common Pharmaceuticals by First- and Second-Derivative IR Spectroscopy,” Chem. Educator 2004, 9, 234–238.
    • Padney, S.; McHale, M. E. R.; Coym, K. S.; Acree Jr., W. E. “Bilinear Regression Analysis as a Means to Reduce Matrix Effects in Simultaneous Spectrophotometric Determination of Cr(III) and Co(II),” J. Chem. Educ. 1998, 75, 878–880.
    • Raymond, M.; Jochum, C.; Kowalski, B. R. “Optimal Multicomponent Analysis Using the Generalized Standard Addition Method,” J. Chem. Educ. 1983, 60, 1072–1073.
    • Ribone, M. E.; Pagani, A. P.; Olivieri, A. C.; Goicoechea, H. C. “Determination of the Active Principle in a Spectrophotometry and Principal Component Regression Analysis,” J. Chem. Educ. 2000, 77, 1330–1333.
    • Rojas, F. S.; Ojeda, C. B. “Recent developments in derivative ultraviolet/visible absorption spectrophotometry: 2004–2008,” Anal. Chim. Acta 2009, 635, 22–44.

    This page titled 10.10: Additional Resources is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David Harvey.

    • Was this article helpful?