Skip to main content
Chemistry LibreTexts

9.7: Additional Resources

  • Page ID
    165354
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The following set of experiments introduce students to the applications of titrimetry. Experiments are grouped into four categories based on the type of reaction (acid–base, complexation, redox, and precipitation). Additional experiments emphasizing potentiometric electrodes are found in Chapter 11.

    Acid–base Titrimetry

    • Boiani, J. A. “The Gran Plot Analysis of an Acid Mixture,” J. Chem. Educ. 1986, 63, 724–726.
    • Castillo, C. A.; Jaramillo, A. “An Alternative Procedure for Titration Curves of a Mixture of Acids of Different Strengths,” J. Chem. Educ. 1989, 66, 341.
    • Clark, R. W.; White, G. D.; Bonicamp, J. M.; Watts, E. D. “From Titration Data to Buffer Capacities: A Computer Experiment for the Chemistry Lab or Lecture,” J. Chem. Educ. 1995, 72, 746–750.
    • Clay, J. T.; Walters, E. A.; Brabson, G. D. “A Dibasic Acid Titration for the Physical Chemistry Laboratory” J. Chem. Educ. 1995, 72, 665–667.
    • Crossno, S. K; Kalbus, L. H.; Kalbus, G. E. “Determinations of Carbon Dioxide by Titration,” J. Chem. Educ. 1996, 73, 175–176.
    • Flowers, P. A. “Potentiometric Measurement of Transition Ranges and Titration Errors for Acid/Base Indicators,” J. Chem. Educ. 1997, 74, 846–847.
    • Fuchsam, W. H.; Garg, Sandhya “Acid Content of Beverages,” J. Chem. Educ. 1990, 67, 67–68
    • Graham. R.C.; DePew, S. “Determination of Ammonia in Household Cleaners,” J. Chem. Educ. 1983, 60, 765–766.
    • Kalbus, L. H.; Petrucci, R. H.; Forman, J. E.; Kalbus, G. E. “Titration of Chromate-Dichromate Mixtures,” J. Chem. Educ. 1991, 68, 677–678.
    • Kooser, A. S.; Jenkins, J. L.; Welch, L. E. “Acid–Base Indicators: A New Look at an Old Topic,” J. Chem. Educ. 2001, 78, 1504–1506.
    • Kraft, A. “The Determination of the pKa of Multiprotic, Weak Acids by Analyzing Potentiometric Acid–Base Titration Data with Difference Plots,” J. Chem. Educ. 2003, 80, 554–559.
    • Murphy, J. “Determination of Phosphoric Acid in Cola Beverages,” J. Chem. Educ. 1983, 60, 420–421.
    • Nyasulu, F.; Barlag, R.; Macklin, J. Chem. Educator 2008, 13, 289–294.
    • Ophardt, C. E. “Acid Rain Analysis by Standard Addition Titration,” J. Chem. Educ. 1985, 62, 257– 258.
    • Partanen, J. I.; Kärki, M. H. “Determination of the Thermodynamic Dissociation Constant of a Weak Acid by Potentiometric Acid-Base Titration,” J. Chem. Educ. 1994, 71, A120–A122.
    • Thompson, R. Q. “Identification of Weak Acids and Bases by Titration with Primary Standards,” J. Chem. Educ. 1988, 65, 179–180.
    • Tucker, S. A.; Amszi, V. L.; Acree, Jr. W. E. “Studying Acid-Base Equilibria in Two-Phase Solvent Media,” J. Chem. Educ. 1993, 70, 80–82.
    • Tucker, S. A.; Acree, Jr., W. E. “A Student-Designed Analytical Laboratory Method,” J. Chem. Educ. 1994, 71, 71–74.
    • Werner, J. A.; Werner, T. C. “Multifunctional Base Unknowns in the Introductory Analytical Chemistry Lab,” J. Chem. Educ. 1991, 68, 600–601.

    Complexation Titrimetry

    • Ceretti, H.; Hughes, E. A.; Zalts, A. “The Softening of Hard Water and Complexometric Titrations,” J. Chem. Educ. 1999, 76, 1420–1421.
    • Fulton, R.; Ross, M.; Schroeder, K. “Spectrophotometric Titration of a Mixture of Calcium and Magnesium,” J. Chem. Educ. 1986, 63, 721–723.
    • Novick, S. G. “Complexometric Titration of Zinc,” J. Chem. Educ. 1997, 74, 1463.
    • Olsen, K. G.; Ulicny, L. J. “Reduction of Calcium Concentrations by the Brita Water Filtration System: A Practical Experiment in Titrimetry and Atomic Absorption Spectroscopy,” J. Chem. Educ. 2001, 78, 941.
    • Smith, R. L.; Popham, R. E. “The Quantitative Resolution of a Mixture of Group II Metal Ions by Thermometric Titration with EDTA,” J. Chem. Educ. 1983, 60, 1076–1077.
    • Yappert, M. C.; DuPré, D. B. “Complexometric Titrations: Competition of Complexing Agents in the Determination of Water Hardness with EDTA,” J. Chem. Educ. 1997, 74, 1422–1423.

    Redox Titrimetry

    • Guenther, W. B. “Supertitrations: High-Precision Methods,” J. Chem. Educ. 1988, 65, 1097–1098.
    • Haddad, P. “Vitamin C Content of Commercial Orange Juices,” J. Chem. Educ. 1977, 54, 192–193.
    • Harris, D. C.; Hills, M. E.; Hewston, T. A. “Preparation, Iodometric Analysis and Classroom Demonstration of Superconductivity in YBa2Cu3O8–x,” J. Chem. Educ. 1987, 64, 847–850.
    • Lau, O.-W.; Luk, S.-F.; Cheng, N. L. N.; Woo, H.-O. “Determination of Free Lime in Clinker and Cement by Iodometry,” J. Chem. Educ. 2001, 78, 1671–1673.
    • Michalowski, T.; Asuero, A. G.; Ponikvar-Svet, M.; Michalowska-Kaczmarczyk, A. M.; Wybraniec, S. “Some Examples of Redox Back Titrations,” Chem. Educator 2014, 19, 217–222.
    • Phinyocheep, P.; Tang, I. M. “Determination of the Hole Concentration (Copper Valency) in the High Tc Superconductors,” J. Chem. Educ. 1994, 71, A115–A118.
    • Powell, J. R.; Tucker, S. A.; Acree, Jr., W. E.; Sees, J. A.; Hall, L. M. “A Student-Designed Potentiometric Titration: Quantitative Determination of Iron(II) by Caro’s Acid Titration,” J. Chem. Educ. 1996, 73, 984–986

    Precipitation Titrimetry

    • Ueno, K.; Kina, K. “Colloid Titration - A Rapid Method for the Determination of Charged Colloid,” J. Chem . Educ. 1985, 62, 627–629.

    For a general history of titrimetry, see the following sources.

    • A History of Analytical Chemistry; Laitinen, H. A.; Ewing, G. W., Eds.; The Division of Analytical Chemistry of the American Chemical Society: Washington, D. C., 1977, pp. 52–93.
    • Kolthoff, I. M. “Analytical Chemistry in the USA in the First Quarter of This Century,” Anal. Chem. 1994, 66, 241A–249A.

    The use of weight instead of volume as a signal for titrimetry is reviewed in the following paper.

    • Kratochvil, B.; Maitra, C. “Weight Titrations: Past and Present,” Am. Lab. 1983, January, 22–29.

    A more thorough discussion of non-aqueous titrations, with numerous practical examples, is provided in the following text.

    • Fritz, J. S. Acid-Base Titrations in Nonaqueous Solvents; Allyn and Bacon, Boston; 1973.

    The sources listed below provides more details on the how potentiometric titration data may be used to calculate equilibrium constants.

    • BabiĆ, S.; Horvat, A. J. M.; PavloviĆ, D. M.; KaŠtelan-Macan, M. “Determination of pKa values of active pharmaceutical ingredients,” Trends Anal. Chem. 2007, 26, 1043–1061.
    • Meloun, M.; Havel, J.; Högfeldt, E. Computation of Solution Equilibria, Ellis Horwood Limited:Chichester, England; 1988.

    The following provides additional information about Gran plots.

    • Michalowski, T.; Kupiec, K.; Rymanowski, M. Anal. Chim. Acta 2008, 606, 172–183.
    • Schwartz, L. M. “Advances in Acid-Base Gran Plot Methodology,” J. Chem. Educ. 1987, 64, 947–950.
    • Schwartz, L. M. “Uncertainty of a Titration Equivalence Point,” J. Chem. Educ. 1992, 69, 879–883.

    The following provide additional information about calculating or sketching titration curves.

    • Barnum, D. “Predicting Acid–Base Titration Curves without Calculations,” J. Chem. Educ. 1999, 76, 938–942.
    • de Levie, R. “A simple expression for the redox titration curve,” J. Electroanal. Chem. 1992, 323, 347–355.
    • Gonzálex-Gómez, D.; Rogríguez, D. A.; Cañada-Cañada, F.; Jeong, J. S. “A Comprehensive Application to Assist in Acid–Base Titration Self-Learning: An Approach for High School and Undergraduate Students,” J. Chem. Educ. 2015, 92, 855–863.
    • King, D. W. “A General Approach for Calculating Speciation and Posing Capacity of Redox Systems with Multiple Oxidation States: Application to Redox Titrations and the Generation of pe–pH,” J. Chem. Educ. 2002, 79, 1135–1140.
    • Smith, G. C.; Hossain, M. M; MacCarthy, P. “3-D Surface Visualization of pH Titration Topos: Equivalence Cliffs, Dilution Ramps, and Buffer Plateaus,” J. Chem. Educ. 2014, 91, 225–231.

    For a complete discussion of the application of complexation titrimetry see the texts and articles listed below.

    • Pribil, R. Applied Complexometry, Pergamon Press: Oxford, 1982.
    • Reilly, C. N.; Schmid, R. W. “Principles of End Point Detection in Chelometric Titrations Using Metal- lochromic Indicators: Characterization of End Point Sharpness,” Anal. Chem. 1959, 31, 887–897.
    • Ringbom, A. Complexation in Analytical Chemistry, John Wiley and Sons, Inc.: New York, 1963.
    • Schwarzenbach, G. Complexometric Titrations, Methuen & Co. Ltd: London, 1957.

    A good source for additional examples of the application of all forms of titrimetry is

    • Vogel’s Textbook of Quantitative Inorganic Analysis, Longman: London, 4th Ed., 1981

    This page titled 9.7: Additional Resources is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David Harvey.

    • Was this article helpful?