Skip to main content
Chemistry LibreTexts

10: ¹H NMR

  • Page ID
    332810
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    1H - NMR Spectroscopy Analysis

    Overview

    Four types of information are found in 1H NMR spectra:

    1. Number of different types of protons (symmetry)
    2. Chemical Shift (bonding environment)
    3. Integration (ratio of protons per resonance)
    4. Multiplicity [n+1] (number of neighboring protons)
    • How is this similar to 13C NMR? DEPT?
    • How is this different from 13C NMR?

     

    1H NMR Shift and Symmetry

    1. Symmetry

    Like 13C, only the unique H atoms will provide a different signal in the spectrum. A peak for every unique H atom will show up.

    • Look for symmetry and “hidden” H atoms.
    • For example:

    clipboard_e25bf86ca61d1c25253694d9d8c01fb85.png

    • Predict the number of peaks that will show up in the spectra of the following compounds:

    clipboard_e964298fa62db99cf07eb99990cbf9ea7.png

     

    1H NMR Chemical Shift

    2. Chemical Shift (bonding environment)

    Like 13C, Chemical Shift (\(\delta\)) is the x-axis.

    – Units = ppm

    – Scale is 0 – 14 ppm compared to ___________ ppm for 13C

    – Depends on Geometry & Dipole

     

    Chemical Shift and Geometry

    sp3 is tetrahedral (carbon with 4 single bonds)

    sp2 is trigonal planar (carbon with two single bonds and one double bond)

    In proton NMR spectroscopy, the shift of the proton is affected by the geometry of the carbon to which it is bonded.

    • Predict where a proton bonded to an sp2 carbon would show up.
    • Predict where a proton bonded to an sp3 carbon would show up.

    clipboard_e58428b41ca3bf3fd1f29135a1628d989.png

     

    1H NMR Shift and Symmetry

    Chemical Shift and Dipole

    As the proton of a functional group becomes more partially positive, it will appear further downfield (larger ppm).

    • Order the following functional groups by the dipole strength. (1 = proton that feels the most neutral; 5 = proton that feels the most positive.)

    clipboard_ec48124eec8477983a8b8c47d6d8bcf77.png

     

    1H Shifts of Alkanes*

    * All spectra are either from SDBS (Japan National Institute of Advanced Industrial Science and Technology) or simulated.

    Hydrocarbons

    • All of the hydrogens are bonded to [ sp3 or sp2 ] carbons.
    • Based on the hybridization where would you expect the peaks to appear?

    Here is a spectrum of a hydrocarbon.

    clipboard_e51ab0dac47d909bb7664c3aaefcf11bb.png

    • Without the presences of any dipoles in the structure, the hydrogens appear below _______ ppm.

     

    1H Shifts of Alkyls next to Carbonyls and Electronegative Atoms

    Hydrogens bonded to sp3 carbons with electron-withdrawing functional groups are shifted downfield (to the left).

    2-butanone

    • The hydrogens on the carbons next to the carbonyl group are shifted to _______ppm.

    clipboard_e7da98abe06eaf1bcc0eb2dfb8798c868.png

    1-chloro-propane

    • The hydrogens on the carbons next to an electronegative atom (O, N, Cl, Br) are shifted to _______ ppm.

    clipboard_ebd5374164879e21072b4dba53550e860.png

     

    1H Shifts of Alkyls next to Carbonyls and Electronegative Atoms

    • Based on the shifts, assign the methyl groups to the correct peak in the proton NMR spectrum.

    clipboard_ea5bd6985f5e4e9fcaff1b5d2c79d9c1f.png

    clipboard_eb4b5bcbf5a4297babe41d0a6b78ef955.png

     

    1H Shifts of Aldehydes and Acids

    Pentanal

    Typically, hydrogens on aldehydes appear between 8-10 ppm.

    • Circle or highlight the peaks corresponding to the highlighted atoms.

    clipboard_ec12bdea993b905d995f086de25ed6a89.png

    Benzoic Acid

    Typically, hydrogens on carboxylic acids appear between 11-14 ppm.

    • Circle or highlight the peaks corresponding to the highlighted atoms.
    • Bonus: Identify the peaks associated with hydrogens on the aromatic ring.

    clipboard_e646cf7b9313521e5e669b4987362a0b9.png

     

    1H Shifts of Alkenes and Aromatics

    2-hexene

    • Typically, hydrogens on an alkene appear between 4-6 ppm.
    • Carbons involved in a double bond are [ sp3 or sp2 ] carbons.
    • Circle or highlight the peaks corresponding to the highlighted atoms

    clipboard_ec8c1ec7e649a64c982bbbd44af91848d.png

    Methylbenzene

    Typically, hydrogens on an aromatic ring appear between 6-8 ppm.

    • Circle or highlight the peaks corresponding to the highlighted atoms.

    clipboard_ec76e31c07ca08b003f043880c2beed4d.png

     

    1H NMR shift: Anisotropy

    Review shifts:

    • Electron-donating groups provide a shielding effect which moves the shift of proton [ upfield / downfield ].
    • Proton shifts move [ upfield / downfield ] when electronegative substituents are attached to the same or an adjacent carbon causing the proton to be deshielded.

    The local circulation of electrons creates a magnetic field which provides a shielding effect, magnetic anisotropy.

    Anisotropy effects are usually used to explain shifts of sp2 and sp hybridized systems.

    Protons on alkenes and aromatic rings behave as if they were bonded to electronegative atoms (~5-8 ppm).

    clipboard_e4ec3b0e3fe0cb69d034e16955c0159cb.png

    • The local circulation of electrons around an aromatic ring creates a magnetic field aligned with the external field deshielding the protons which causes the shift to move [ upfield / downfield ].

    In contrast, protons on alkynes are not shifted very far (~2-3 ppm).

    clipboard_e8534391abf44fc0d1318bc42d1f8071b.png

    • Proton shifts move [ upfield / downfield ] when the magnetic field is aligned opposite to the external field providing a shielding effect.

    1H NMR Shift: Solvent Effects

    The chemical shift of a given proton will change depending on the environment. The variability is especially large for NH and OH protons (several ppm).

    Different solvents can cause changes in chemical shifts as large as 0.5 to 0.8 ppm

    clipboard_e83fe89a86f9fa494ba4da1ae3edf0621.png

    1-phenylbutan-1-one in deuterated benzene vs deuterated chloroform

    • Suggest a reason that solvent can impact chemical shift. Consider how it might make an atom ‘feel’ more or less positive.

     

    1H NMR Shift: Hydrogen Bonding & Concentration

    Chemical shifts of protons can vary with concentration, especially if hydrogen bonding can occur. The chemical shifts of protons on oxygen (OH) and nitrogen (NH), which are often directly involved in hydrogen bonding are especially strongly dependent (several ppm) on concentration, solvent and temperature.

    clipboard_e5b81cf75625da84e8b02f73cd47a9a74.png

    • Explain why hydrogen bonding would affect chemical shift. In other words, would a proton that is involved in hydrogen bonding, feel more or less deshielded?
    • Explain why concentration will affect the amount of hydrogen bonding.

     

    Summary of Chemical Shifts in 13C NMR vs 1H NMR

    clipboard_e240d357b9f426ab62b61e42753956c4e.png

    1H NMR Integration

    The area under an NMR peak is proportional to the number of hydrogens which that resonance represents.

    Measuring or integrating the different NMR resonances provides information regarding the relative numbers of different hydrogens, not the absolute number.

    Propane

    • How many unique hydrogens in propane?
    • What is the ratio of hydrogens?

    Experimentally, the integrals will usually appear as a line over the NMR spectrum. The heights of the “stair steps” can be directly compared as ratios to determine the ratio of hydrogen atoms represented by this peak.

    • Does your prediction match the spectrum below?

    clipboard_ed839e181ec68d309561502e062200a20.png

    1H NMR Integration Practice

    • Which of the following would be possible hydrogen ratios represented by the integration curve shown below? Circle all that apply.
      • 25:10:25
      • 4:10:4
      • 2:1:2
      • 5:2:5

    clipboard_ea6c7f1fbc38ba01ef6e6153c8c80a6ee.png

    • Which of the following compounds match the integration ratio and chemical shift shown in this spectrum?

    clipboard_e6d207254dd2bc7e3ba543446a63809fe.png

    1. clipboard_edddc0b4e13d0c900574383296dd92497.png
    2. clipboard_ea9df894b9c5f8db13d3360fb21996744.png
    3. CH3CH2OCH2CH3
    4. CH3CH2OH

    1H NMR Multiplicity

    4. Multiplicity (also called coupling or splitting)

    Multiplicity usually follows a simple n+1 rule for the number of lines displayed for a peak.

    Pattern Multiplicity Number of H on C next door Example
    clipboard_eb62780b17241352103825f42ac8dee27.png singlet (s) 0 clipboard_e92e4ef2a5819464b140797e62887632b.png

    clipboard_e815ab14cc25c6bcc723c36305fff126c.png

    1:1

    doublet (d) 1 clipboard_e2f6a004ea1578b7898b735768e5004b3.png

    clipboard_ece7957cb00cf8757e70993a51e70a3f7.png

    1:2:1

    triplet (t) 2 clipboard_e392db96477c9af81c4acffdd5516835f.png

    clipboard_ee4736a5aadd8cdf8a873f9de64d4220a.png

    1:3:3:1

    quartet (q) 3 clipboard_eba7547aca708370b05aa0d600fac8d9a.png
    • How many lines would you expect to see for a proton when there are 6 H on the neighboring carbons?
    • How many lines would you expect to see for a proton when there are 42 H on the neighboring carbons?

     

    1H NMR Multiplicity Practice

    Instead of predicting the number of lines, we often need to look at the peak and predict how many H are on neighboring carbons.

    • Determine how many H are next door to the observed H looking at the following splitting patterns:
    1. clipboard_eca7b2721834044fc9171c702eb87bf3f.png
    2. clipboard_eee2b6c7fbc3e0335e7c73bde54477e06.png
    3. clipboard_e5cc3fec5c0e141c950afe37df0f7586d.png
    4. clipboard_ef5af4d3af1a6bc02036ea70d8acad3e0.png
    5. clipboard_efc616764539ee720c572b2c4dc09f1b4.png

     

    1H NMR Multiplicity

    Here is the spectrum of propane again.

    • Explain the multiplicity of each peak.

    clipboard_edbe021bfd2bd3009ae9e1d80ad61e35e.png

    Here is the spectrum of ethanol. clipboard_ee838ab2606f8211ab1319715c33a5115.png

    • Assign each peak in the spectrum to the correct set of hydrogens.
    • Explain the multiplicity of each peak.

    clipboard_ede2bc5e8d9ab153c30c04e58ba6e6871.png

     

    1H Spectral Analysis

    • Predict the 13C NMR spectra for 2-butanone. 
      • Estimate appropriate shifts.

    clipboard_e483134fc29c5bd16f8d41e8a472ab3e9.png

    clipboard_e1a2b177e8ec9062396eda68056d9acdc.png

    • Predict the 1H NMR spectra for 2-butanone.
      • Estimate appropriate shifts.
      • Include the correct multiplicity for each peak.
      • Draw in the expected integration lines.

    clipboard_e80ad73cc2885a9c706822cde733909b4.png

     

    1H Spectral Analysis: Data Tables

    Making data tables is important in structure elucidation. It helps with interpretation, keeping track of details, and communicating your analysis process (to your instructor or in a publication).

    There is a standard format for 1H NMR tables. This format shows all four pieces of data that can be inferred from a spectrum (# peaks, shift, integration, multiplicity). Then in the final column, there is a place for you to show a partial structure derived from the data presented.

    In the partial structure, the hydrogens being observed are underlined.

    clipboard_e31b0718d4797aab71200d7cbdade7ab1.png

    Partial Structures

    When analyzing proton NMR spectra (and later 2D spectra), we will refer to part structures/spin systems.

    For example, consider 3-heptanone:

    clipboard_efe8a6d96817a3b8177b08d599b07b805.png

    Protons a, b, c and d constitute one spin system, an unbroken network of coupled protons. The ethyl group, e and f, constitutes a second, separate spin system, because there is no coupling between a and e, across the carbonyl.

    clipboard_e14631bc03dfcd95fb214b8579d70137d.png

    • Complete the following table:
    Shift (ppm) Integration Multiplicity Designation Partial Structure
    .9 3H t d CH3-CH2
    1.1   t f  
    1.4 2H      
    1.6        
    2.4 2H t e CO-CH2-CH3
    2.45        

     

    1H Spectral Analysis: Data Tables

    • Complete the following table to interpret this spectrum.
    • Propose a structure for the compound.

    C3H8O         SU: ___________

    clipboard_e69d76ea2b74961f8665338c9d6a6a637.png

    Shift (ppm) Integration Multiplicity Partial Structure
    4.0 1H sept  
    2.1 1H s  
    1.2 6H d  

     

    Proposed Structure:

     

     

     

    1H Spectral Analysis: Data Tables

    • Complete the following table to interpret this spectrum.
    • Propose a structure for the compound.

    C3H8O         SU: ___________

    clipboard_e077ebdabf76a971925cd0af13673aef7.png

    Shift (ppm) Integration Multiplicity Partial Structure
    3.6      
    2.4      
    1.5      
    1      

     

    Proposed Structure:

     

     

     

    1H Spectral Analysis: Data Tables

    • Complete the following table to interpret this spectrum.
    • Propose a structure for the compound.

    C3H7Br         SU: ___________

    clipboard_eb32b8a562b8c75db9adb4101906f5698.png

    Shift (ppm) Integration Multiplicity Partial Structure
    1.6      
    4.3      

     

    Proposed Structure:

     

     

     

    1H Spectral Analysis: Data Tables

    • Complete the following table to interpret this spectrum.
    • Propose a structure for the compound.

    C4H8O         SU: ___________

    clipboard_ec541906b6fec6f92cc453edca9e21b62.png

    Shift (ppm) Integration Multiplicity Partial Structure
    4.05      
    2.0      
    1.2      

     

    Proposed Structure:

     

     

     

    Aromatic Splitting Patterns

    There are three isomers with the condensed formula CH3OC6H4CO2H. The C6H4 refers to a benzene, a ring of carbons with three double bonds.

    • Draw the three isomers and predict what the 1H NMR spectrum will look like by filling in a data table.

    Ortho Isomer structure:

    shift integration multiplicity assignment
           
           
           
           
           
           

     

    Meta isomer structure:

    shift integration multiplicity assignment
           
           
           
           
           
           

     

    Para isomer structure:

    shift integration multiplicity assignment
           
           
           
           
           
           

     

    • The calculated spectra of these three isomers are on this page. Match the structure with the compound.

    clipboard_eef5a13397be31ad3c8b1b2334a7e09f5.png

    clipboard_ee15c109d20647d6a73d407dba74578ef.png

    clipboard_ef9e6386adc6d11d00b9835a71dedfbba.png

     

    1H Spectral Problems

    A. C5H10O2 SU: _____________

    clipboard_e32468cc7e6968aeb8688aaf04fb5c1ad.png

    Chemical Shift Integration Multiplicity Interpretation
           
           
           
           
           
           
           

     

    Proposed Structure:

     

     

     

    B.  C5H10O2         SU: _____________

    clipboard_e76ff59186a1379f6a3db88653b3c2a08.png

    Chemical Shift Integration Multiplicity Interpretation
           
           
           
           
           
           
           

     

    Proposed Structure:

     

     

     

    C.  C9H10O         SU: _____________

    clipboard_e91519f538060efc67208b4263cde571a.png

    Chemical Shift Integration Multiplicity Interpretation
           
           
           
           
           
           
           

     

    Proposed Structure:

     

     

    D. C10H12O         SU: _____________

    clipboard_e645f84e31e7a654d75987286ec31bd8b.png

    Chemical Shift Integration Multiplicity Interpretation
           
           
           
           
           
           
           

     

    Proposed Structure:

     

     

    E. C5H10O         SU: _____________

    clipboard_ed31b7250942736f815d71380cd918f2b.png

    Chemical Shift Type of Bonding Environment
       
       
       
       
       

     clipboard_ee2b737459dabe275df96c539eac9c546.png

    Proposed Structure:  

     

    F. C5H10O2         SU: _____________

    clipboard_e570687ed3f7b249231b5f4c05fd37e45.png

    Chemical Shift Type of Bonding Environment
       
       
       
       
       

     clipboard_e20b8ecb34893744c48b4f421bbadc6bc.png

    Chemical Shift Integration Multiplicity Interpretation
           
           
           
           
           
           
           

     

    Proposed Structure:  

     

    G. C5H10O2         SU: _____________

    clipboard_ef6ec6a2a119488940a41a02dff626517.png

    Chemical Shift Type of Bonding Environment
       
       
       
       
       

    clipboard_ec7f6adff052b256e1b0e0563104b2b46.png

    Chemical Shift Integration Multiplicity Interpretation
           
           
           
           
           
           
           

     

    Proposed Structure:  

     

    H.  C5H10O         SU: _____________

    clipboard_e96af0d48886b8733a73f405e0285a0dc.png

    Chemical Shift Type of Bonding Environment
       
       
       
       
       

    clipboard_e52ae55961ccfe7263331b6f85c8aa48f.png

    Chemical Shift Integration Multiplicity Interpretation
           
           
           
           
           
           
           

     

    Proposed Structure:  

     

    I.  C5H10O         SU: _____________

    clipboard_eb52466749215644077eb9bd9d21ab256.png

    Chemical Shift Type of Bonding Environment
       
       
       
       
       

    clipboard_e4831514cfdc9feb722f298b85f5950f2.png

    Proposed Structure:  

    This page titled 10: ¹H NMR is shared under a not declared license and was authored, remixed, and/or curated by Kate Graham.

    • Was this article helpful?