Skip to main content
Chemistry LibreTexts

Extra Credit 26

  • Page ID
    83535
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Q19.9A

    Edit section

    A voltaic cell with Ecell=1.500V has what [Ag+] in the cell?

    Zn(s)|Zn2+(1.50M)||Ag+(?M)|Ag(s)

    S19.9A

    Solve for Ecell

    Zn(s)→ Zn2+ + 2e- (oxidation) - anode E = -0.763V

    [Ag+ + e-→ Ag(s)] x 2 (reduction) - cathode E= 0.800V

    Zn(s)+2Ag+(aq)→Zn2+(aq)+2Ag(s)

    E cell = cathode - anode

    E cell= 0.800V - (-0.763V ) = 1.563V

    Use the Nernst Equation

    E=Ecell−(0.05922/n) logQ

    1.5V=1.563V−0.02961 log (⁡[1.50]/[Ag+]2)

    2.128 = log (⁡[1.50]/[Ag+]2) --> 10(2.128) = 10(log (⁡[1.50]/[Ag+]))

    134.17 = 1.5/[Ag+]2

    [Ag+] = 0.1054

    Q19.65C

    Edit section

    Out of the reactions given below, which of the following can occur spontaneously only through electrolysis. For those requiring electrolysis, what is the minimum voltage required?

    1. I2(s)+Ni(s)→2I+Ni2+
    2. Br2(aq)+2Fe2+→2Br+2Fe3+
    3. Ni2++2Cl(aq)→Ni(s)+Cl2(g)
    4. Cr2+(aq)+Fe3+(aq)→Cr3+(aq)+Fe2+(aq)

    S19.65C

    1. I2(s)+Ni(s)→2I+Ni2+

    I2(s)+ 2e→2I (reduction) (cathode) --> 0.535V

    Ni(s)→Ni2+ + 2e (oxidation) (anode) --> -0.257V

    E cell = cathode - anode = 0.535 - (-0.257) = 0.792V

    E cell is positive, so not spontaneous through electrolysis. The minimum voltage is 0.80V.

    2. Br2(aq)+2Fe2+→2Br+2Fe3+

    Br2(aq) + 2e→2Br (reduction) (cathode) --> 1.065V

    2Fe2+→ 6e+ 2Fe3+ (oxidation) (anode) -->0.745V

    E cell = cathode - anode = 1.065V - (0.745) = 0.32V

    E cell is positive, so not spontaneous through electrolysis. The minimum voltage is 0.33

    3. Ni2++2Cl(aq)→Ni(s)+Cl2(g)

    Ni2++2e→Ni(s) (reduction) (cathode) --> -0.257V

    2Cl(aq)→ 2e+Cl2(g) (oxidation) (anode) --> 1.358V

    E cell = cathode - anode = -0.257V -(1.358) = -1.615V

    E cell is negative, so it is spontaneous through electrolysis.

    4. Cr2+(aq)+Fe3+(aq)→Cr3+(aq)+Fe2+(aq)

    Fe3+(aq) + e→Fe2+(aq) (reduction) (cathode) --> 0.771V

    Cr2+(aq)→Cr3+(aq) + 3e (oxidation) (anode) --> 0.424V

    E cell = cathode - anode = 0.771 -(0.424) = 1.195V

    E cell is positive, so not spontaneous through electrolysis. The minimum voltage is 1.20V

    Q21.5C

    Draw Lewis structures for the following ligands: a) OH−OH−b) NO−2NO2− c) NH3NH3 d) SO−4SO4− e) enen (hint: C2H8N2C2H8N2)

    S21.5C

    a) download5Ba.png

    b) download5Bb.png

    c) download5Bc.png

    d) download5Bd.png

    e) download5Be.png

    Q24.13C

    The following rates of reactions were obtained in three experiments with the reaction 2NO(g)+Cl2(g)→2NOCl(g)2NO(g)+Cl2(g)→2NOCl(g)

    Expt

    Initial [NO], M

    Initial [Cl2], M

    Initial rate of reaction, Ms-1

    1

    0.145

    0.405

    1.24 X 10-5

    2

    0.145

    0.81

    2.48 X 10-5

    3

    0.29

    0.405

    4.96 X 10-5

    What is the rate law for this reaction?

    S24.13C

    [NO] 1/3 --> (0.145/0.29)x = (1.24 X 10-5/4.96 X 10-5) [Cl2] 1/2 --> (0.405/0.81)y = (1.24 X 10-5/2.48 X 10-5)

    0.5x = 0.2419 0.5y = 0.5

    x = 2 y = 1

    r = k [NO]2[Cl2]

    1.24 X 10-5 = k (0.1452)(0.405)

    k = 1.46 X 10-3 M-2s-1

    r = 1.46 X 10-3 M-2s-1 [NO]2[Cl2]

    Q24.60B

    The following substrates concentration [S] versus time date were obtained during an enzyme-catalyzed reaction: t = 0 min; [S] = 1.00M; 30 min, 0.90M; 90 min, 0.70M; 120 min, 0.50M; 180 min, 0.20M. What order is this reaction with respect to S in the concentration?

    S24.60B

    time (min) molarity (M)
    0 1
    30 0.9
    90 0.7
    120 0.5
    180 0.2

    exponential decay, so it is first order

    Q25.29B

    Calculate the binding energy per nucleon, in megaelectronvolts, of the nuclide Screen Shot 2017-06-11 at 6.03.40 PM.png if its measured mass is 28.1900 u.

    Mass of proton=1.0073u

    Mass of neutron=1.0087u

    S25.29B

    Screen Shot 2017-06-11 at 6.03.40 PM.png→ 14 protons + 16 neutrons

    28.1900u → (14 x 1.0073u) + (16 x 1.0087u)

    Δm = products - reactants = 30.2414 - 28.1900 = 2.0514u

    1 u = 931.5MeV

    2.0514u x (931.5MeV/u) = 1910.8791MeV/nuclei x (1 nuclei/30 nucleons) = 63.70MeV/nucleon

    Q21.1.5

    Gamma rays are a very high-energy radiation, yet α particles inflict more damage on biological tissue. Why?

    S21.1.5

    While gamma rays are high energy radiation and can pass through many materials, alpha particles are the most dangerous inside the body. Once inside the body, internal tissues absorb all of the particles' energy.

    Q24.6.2

    In CFT, what causes degenerate sets of d orbitals to split into different energy levels? What is this splitting called? On what does the magnitude of the splitting depend?

    S24.6.2

    The overlap of the orbitals and ligand fields disrupt the electrons, which causes the splitting. This splitting is t2g and eg .


    Extra Credit 26 is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?