Loading [MathJax]/jax/output/SVG/config.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Chemistry LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Show Page TOC
    • Cover Page
    • License
    • Transcluded
    • Number of Print Columns
    • PrintOptions
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
  • Include attachments
Searching in
About 9 results
  • https://chem.libretexts.org/Courses/University_of_Arkansas_Little_Rock/Chem_1403%3A_General_Chemistry_2/Text/19%3A_Electron_Transfer_Reactions/19.03%3A_Electrochemical_Cells
    If a redox reaction can be split into half reactions it becomes possible to build a device, called an electrochemical cell, that has separate compartments (cells) for the oxidant and reductant, that p...If a redox reaction can be split into half reactions it becomes possible to build a device, called an electrochemical cell, that has separate compartments (cells) for the oxidant and reductant, that physically prevents them from contacting each other and reacting, but allows for charge transfer in the form of electrons through an external circuit and in the form of counter ions in a salt bridge that connects the cells.
  • https://chem.libretexts.org/Courses/University_of_Wisconsin_Oshkosh/Chem_370%3A_Physical_Chemistry_1_-_Thermodynamics_(Gutow)/05%3A_Ions_and_Electrochemistry/5.06%3A_Half_Cells_and_Standard_Reduction_Potentials
    The page explains the concept of standard reduction potentials and how to calculate cell potentials for electrochemical cells. It highlights the role of the Standard Hydrogen Electrode (SHE) as a refe...The page explains the concept of standard reduction potentials and how to calculate cell potentials for electrochemical cells. It highlights the role of the Standard Hydrogen Electrode (SHE) as a reference point set to 0.00 V.
  • https://chem.libretexts.org/Bookshelves/Introductory_Chemistry/Introductory_Chemistry_(CK-12)/23%3A_Electrochemistry/23.07%3A_Batteries
    This page discusses the invention of the first voltaic cell by Alessandro Volta in 1800, which used zinc and silver disks. It outlines modern battery types, including dry cells used in devices like fl...This page discusses the invention of the first voltaic cell by Alessandro Volta in 1800, which used zinc and silver disks. It outlines modern battery types, including dry cells used in devices like flashlights, and alkaline batteries, which have a longer shelf life. It also describes lead storage batteries, commonly used in vehicles, that consist of six cells and are rechargeable, emphasizing their chemical reactions and potential inefficiencies over time.
  • https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Instrumental_Analysis_(LibreTexts)/22%3A_An_Introduction_to_Electroanalytical_Chemistry
    The simplest division of electrochemical techniques is between bulk techniques, in which we measure a property of the solution in the electrochemical cell, and interfacial techniques, in which the pot...The simplest division of electrochemical techniques is between bulk techniques, in which we measure a property of the solution in the electrochemical cell, and interfacial techniques, in which the potential, current, or charge depends on the species present at the interface between an electrode and the solution in which it sits.
  • https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Analytical_Chemistry_2.1_(Harvey)/11%3A_Electrochemical_Methods/11.05%3A_Problems
    This document entails a series of advanced electrochemistry problems that cover various aspects of electrochemical cells, ion-selective electrodes, potentiometry, controlled-potential coulometry, and ...This document entails a series of advanced electrochemistry problems that cover various aspects of electrochemical cells, ion-selective electrodes, potentiometry, controlled-potential coulometry, and voltammetry.
  • https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(Fleming)/10%3A_Electrochemistry/10.03%3A_Half_Cells_and_Standard_Reduction_Potentials
    The page explains the concept of standard reduction potentials and how to calculate cell potentials for electrochemical cells. It highlights the role of the Standard Hydrogen Electrode (SHE) as a refe...The page explains the concept of standard reduction potentials and how to calculate cell potentials for electrochemical cells. It highlights the role of the Standard Hydrogen Electrode (SHE) as a reference point set to 0.00 V. Through examples, it demonstrates how to determine the spontaneity of reactions and calculate cell potential using standard values and the Nernst equation under non-standard conditions.
  • https://chem.libretexts.org/Courses/Los_Angeles_Trade_Technical_College/Analytical_Chemistry/2%3A_Analytical_Chemistry_2.0_(Harvey)/12%3A_Electrochemical_Methods/12.2%3A_Potentiometric_Methods
    In potentiometry we measure the potential of an electrochemical cell under static conditions. Because no current—or only a negligible current—flows through the electrochemical cell, its composition re...In potentiometry we measure the potential of an electrochemical cell under static conditions. Because no current—or only a negligible current—flows through the electrochemical cell, its composition remains unchanged. For this reason, potentiometry is a useful quantitative method. The first quantitative potentiometric applications appeared soon after the formulation of the Nernst equation, which relates an electrochemical cell’s potential to the concentration of electroactive species in the cell.
  • https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Instrumental_Analysis_(LibreTexts)/25%3A_Voltammetry/25.02%3A_Voltammetric_Instrumentation
    Although early voltammetric methods used only two electrodes, a modern voltammeter makes use of a three-electrode potentiostat. The potential of the working electrode is measured relative to a constan...Although early voltammetric methods used only two electrodes, a modern voltammeter makes use of a three-electrode potentiostat. The potential of the working electrode is measured relative to a constant-potential reference electrode that is connected to the working electrode through a high-impedance potentiometer. The auxiliary electrode generally is a platinum wire and the reference electrode usually is a SCE or a Ag/AgCl electrode.
  • https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Analytical_Chemistry_2.1_(Harvey)/11%3A_Electrochemical_Methods/11.01%3A_Overview_of_Electrochemistry
    This chapter focuses on analytical electrochemistry, which uses measurements of potential, current, or charge to determine analyte concentration or chemical reactivity. Key concepts include the relati...This chapter focuses on analytical electrochemistry, which uses measurements of potential, current, or charge to determine analyte concentration or chemical reactivity. Key concepts include the relationship between electrode potential and analyte form, differences in surface and bulk concentrations, current's role in measuring redox rates, and the balance between controlling current and potential.

Support Center

How can we help?