Skip to main content
Chemistry LibreTexts

26: Transition Metals and Coordination Compounds

  • Page ID
    219360
    • 26.1: The Colors of Rubies and Emeralds
      One of the most striking characteristics of transition-metal complexes is the wide range of colors they exhibit.
    • 26.2: Properties of Transition Metals
      The transition metals are elements with partially filled d orbitals, located in the d-block of the periodic table. The reactivity of the transition elements varies widely from very active metals such as scandium and iron to almost inert elements, such as the platinum metals. The type of chemistry used in the isolation of the elements from their ores depends upon the concentration of the element in its ore and the difficulty of reducing ions of the elements to the metals.
    • 26.3: Coordination Compounds
      The transition elements and main group elements can form coordination compounds, or complexes, in which a central metal atom or ion is bonded to one or more ligands by coordinate covalent bonds. Ligands with more than one donor atom are called polydentate ligands and form chelates. The common geometries found in complexes are tetrahedral and square planar (both with a coordination number of four) and octahedral (with a coordination number of six).
    • 26.4: Structure and Isomerization
      Two compounds that have the same formula and the same connectivity do not always have the same shape. There are two reasons why this may happen. In one case, the molecule may be flexible, so that it can twist into different shapes via rotation around individual sigma bonds. This phenomenon is called conformation, and it is covered in a different chapter. The second case occurs when two molecules appear to be connected the same way on paper, but are connected in two different ways in three dimens
    • 26.5: Bonding in Coordinate Compounds
      Crystal field theory treats interactions between the electrons on the metal and the ligands as a simple electrostatic effect. The presence of the ligands near the metal ion changes the energies of the metal d orbitals relative to their energies in the free ion. Both the color and the magnetic properties of a complex can be attributed to this crystal field splitting. The magnitude of the splitting depends on the nature of the ligands bonded to the metal.
    • 26.6: Applications of Coordination Compounds
      In this section, we describe several systems that illustrate the roles transition metals play in biological systems. Our goal is for you to understand why the chemical properties of these elements make them essential for life. We begin with a discussion of the strategies organisms use to extract transition metals from their environment.
    • 26.E: Transition Metals and Coordination Compounds (Exercises)