Skip to main content
Chemistry LibreTexts

6.10: Factors Affecting Electronic Structure

  • Page ID
    445367
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Electronic Structures of Metal Complexes

     

    According to the Aufbau principle, electrons are filled from lower to higher energy orbitals. For the octahedral case, this corresponds to filling the dxy, dxz, and dyz orbitals first. Following Hund's rule, electrons are distributed into orbitals to give the highest number of unpaired electrons. For example, if one had a d3 complex, there would be three unpaired electrons.

    Consider several examples of electronic configurations for octahedral complexes shown in Figure \(\PageIndex{1}\). The Ti3+ ion contains a single d electron, and additional configurations can be obtained as we proceed across the first row of the transition metals by adding a single electron at a time. Additional electrons are placed in the lowest-energy orbital available, while keeping their spins parallel as required by Hund’s rule. As shown in Figure \(\PageIndex{1}\), for d1–d3 systems—such as [Ti(H2O)6]3+, [V(H2O)6]3+, and [Cr(H2O)6]3+, respectively—the electrons successively occupy the three degenerate t2g orbitals with their spins parallel, giving one, two, and three unpaired electrons, respectively. We can summarize this for the complex [Cr(H2O)6]3+, for example, by saying that the chromium ion has a d3 electron configuration or, more succinctly, Cr3+ is a d3 ion.

    fb01ee6b509c632695d226337095e4df.jpg
    Figure \(\PageIndex{1}\): The Possible Electron Configurations for Octahedral dn Transition-Metal Complexes (n = 1–10). Two different configurations are possible for octahedral complexes of metals with d4, d5, d6, and d7 configurations; the magnitude of Δo determines which configuration is observed. (CC BY-SA-NC; anonymous by request)

    When we reach the d4 configuration, there are two possible choices for the fourth electron: it can occupy one of the empty, higher-energy eg orbitals (dor dx²-y²or it can occupy one of the lower-energy, singly-occupied t2g orbitals (dxy, dxz, or dyz). Recall that placing an electron in an already occupied orbital results in electrostatic repulsions that increase the energy of the system; this increase in energy is called the spin-pairing energy (P). If Δo is less than P, then the lowest-energy arrangement places the fourth electron in one of the empty eg orbitals. This configuration maximizes the spin multiplicity. Because this arrangement results in four unpaired electrons, it is called a high-spin configuration, and a complex with this electron configuration, such as the [Cr(H2O)6]2+ ion, is called a high-spin complex. Conversely, if Δo is greater than P, then the lowest-energy arrangement places the fourth electron in one of the occupied t2g orbitals. Because this arrangement results in only two unpaired electrons, it is called a low-spin configuration, and a complex with this electron configuration, such as the [Mn(CN)6]3− ion, is called a low-spin complex. Similarly, metal ions with the d5, d6, or d7 electron configurations can be either high spin or low spin, depending on the magnitude of Δo.

    In contrast, only one arrangement of d electrons is possible for metal ions with d8–d10 electron configurations. For example, the [Ni(H2O)6]2+ ion is d8 with two unpaired electrons, the [Cu(H2O)6]2+ ion is d9 with one unpaired electron, and the [Zn(H2O)6]2+ ion is d10 with no unpaired electrons.

    If Δo is less than the spin-pairing energy, a high-spin configuration results. Conversely, if Δo is greater, a low-spin configuration forms.

    A Note on units

    The crystal field splitting energy, Δo, may be reported in units of J/mol or wave numbers (cm-1). Typically, energies obtained by spectroscopic measurements are often given wave numbers; the wave number is the reciprocal of the wavelength of the corresponding electromagnetic radiation expressed in centimeters: 1 cm−1 = 11.96 J/mol.

    Factors That Affect the Magnitude of Δo

    The magnitude of the crystal field splitting energy, Δo, dictates whether a complex with four, five, six, or seven d electrons is high spin or low spin, which affects its magnetic properties, structure, and reactivity. Large values of Δo (i.e., Δo > P) yield a low-spin complex, whereas small values of Δo (i.e., Δo < P) produce a high-spin complex. As we noted, the magnitude of Δo depends on three factors: the charge on the metal ion, the principal quantum number of the metal (and thus its location in the periodic table), and the nature of the ligand. Values of Δo for some representative transition-metal complexes are given in Table \(\PageIndex{1}\).

    Table \(\PageIndex{1}\): Crystal Field Splitting Energies for Some Octahedral (Δo) and Tetrahedral (Δt) Transition-Metal Complexes
    Octahedral Complexes Δo (cm−1) Octahedral Complexes Δo (cm−1) Tetrahedral Complexes Δt (cm−1)

    Source of data: Duward F. Shriver, Peter W. Atkins, and Cooper H. Langford, Inorganic Chemistry, 2nd ed. (New York: W. H. Freeman and Company, 1994).

    [Ti(H2O)6]3+ 20,300 [Fe(CN)6]4− 32,800 VCl4 9010
    [V(H2O)6]2+ 12,600 [Fe(CN)6]3− 35,000 [CoCl4]2− 3300
    [V(H2O)6]3+ 18,900 [CoF6]3− 13,000 [CoBr4]2− 2900
    [CrCl6]3− 13,000 [Co(H2O)6]2+ 9300 [CoI4]2− 2700
    [Cr(H2O)6]2+ 13,900 [Co(H2O)6]3+ 27,000    
    [Cr(H2O)6]3+ 17,400 [Co(NH3)6]3+ 22,900    
    [Cr(NH3)6]3+ 21,500 [Co(CN)6]3− 34,800    
    [Cr(CN)6]3− 26,600 [Ni(H2O)6]2+ 8500    
    Cr(CO)6 34,150 [Ni(NH3)6]2+ 10,800    
    [MnCl6]4− 7500 [RhCl6]3− 20,400    
    [Mn(H2O)6]2+ 8500 [Rh(H2O)6]3+ 27,000    
    [MnCl6]3− 20,000 [Rh(NH3)6]3+ 34,000    
    [Mn(H2O)6]3+ 21,000 [Rh(CN)6]3− 45,500    
    [Fe(H2O)6]2+ 10,400 [IrCl6]3− 25,000    
    [Fe(H2O)6]3+ 14,300 [Ir(NH3)6]3+ 41,000    

    Factor 1: Charge on the Metal Ion

    Increasing the charge on a metal ion has two effects: the radius of the metal ion decreases, and negatively charged ligands are more strongly attracted to it. Both effects decrease the metal–ligand distance, which in turn causes the negatively charged ligands to interact more strongly with the d-orbitals. Consequently, the magnitude of Δo increases as the charge on the metal ion increases. Typically, Δo for a +3 ion is about 50% greater than for the +2 ion of the same metal; for example, for [V(H2O)6]2+, Δo = 11,800 cm−1; for [V(H2O)6]3+, Δo = 17,850 cm−1.

    Factor 2: Principal Quantum Number of the Metal

    For a series of complexes of metals from the same group in the periodic table with the same charge and the same ligands, the magnitude of Δo increases with increasing principal quantum number: Δo (3d) < Δo (4d) < Δo (5d). The data for hexaammine complexes of the trivalent Group 9 metals illustrate this point:

    [Co(NH3)6]3+: Δo = 22,900 cm−1

    [Rh(NH3)6]3+: Δo = 34,100 cm−1

    [Ir(NH3)6]3+: Δo = 40,000 cm−1

    The increase in Δo with increasing principal quantum number is due to the larger radius of valence orbitals down a column. In addition, repulsive ligand–ligand interactions are most important for smaller metal ions. Relatively speaking, this results in shorter M–L distances and stronger d orbital–ligand interactions.

    Factor 3: The Nature of the Ligands

    clipboard_e3082d8adaae5b7b28873cc2fbb88a183.png
    Figure \(\PageIndex{2}\): Low Spin, Strong Field (∆o˃P) High Spin, Weak Field (∆o˂P)Splitting for a \(d^4\) complex under a strong field (left) and a weak field (right). The strong field is a low spin complex, while the weak field is a high spin complex.

    Experimentally, it is found that the Δo observed for a series of complexes of the same metal ion depends strongly on the nature of the ligands. Ligands that cause a transition metal to have a small crystal field splitting, which leads to a high-spin configuration, are called weak-field ligands. Ligands that produce a large crystal field splitting, which leads to a low-spin configuration, are called strong field ligands (Figure \(\PageIndex{2}\)).

    For a series of chemically similar ligands, the magnitude of Δo decreases as the size of the donor atom increases. For example, Δo values for halide complexes generally decrease in the order F > Cl > Br > I− because smaller, more localized charges, such as we see for F, interact more strongly with the d orbitals of the metal ion.

    In addition, a small neutral ligand with a highly localized lone pair, such as NH3, results in significantly larger Δo values than might be expected. Because the lone pair points directly at the metal ion, the electron density along the M–L axis is greater than for a spherical anion such as F.

    The experimentally observed order of the crystal field splitting energies produced by different ligands is called the spectrochemical series. It is shown here in order of increasing Δo:

    \[ \underset{\textrm{weak-field ligands}}{I^- < Br^- < Cl^-} < \underline{S}CN^- < CH_3COO^- < F^- < OH^- < ox^{2-} < \underset{\textrm{intermediate-field ligands}}{ONO^- < H_2O < SC\underline{N}^-} < EDTA^{4-} <NH_3 < en < NO_2^- < \underset{\textrm{strong-field ligands}}{ CN^- \approx CO} \nonumber\]

    Note that SCN- and NO2- ligands are represented twice in the above spectrochemical series since there are two different Lewis base sites (e.g., free electron pairs to share) on each ligand (e.g., for the SCN- ligand, the electron pair on the sulfur or the nitrogen can form the coordinate covalent bond to a metal). The specific atom that binds in such ligands is underlined.

    The largest Δo splittings are found in complexes of metal ions from the third row of the transition metals with charges of at least +3 and ligands with localized lone pairs of electrons.

    Factor 4: Molecular Geometry

    In addition to octahedral complexes, two common geometries observed are that of tetrahedral and square planar. These complexes differ from the octahedral complexes in that the orbital levels are raised in energy due to the interference with electrons from ligands. For the tetrahedral complex, the dxy, dxz, and dyz orbitals are raised in energy while the d, dx²-y² orbitals are lowered. For the square planar complexes, there is greatest interaction with the dx²-y² orbital and therefore it has higher energy. The next orbital with the greatest interaction is dxy, followed below by d. The orbitals with the lowest energy are the dxz and dyz orbitals. There is a large energy separation between the d orbital and the dxz and dyz orbitals, meaning that the crystal field splitting energy is large. We find that the square planar complexes have the greatest crystal field splitting energy compared to all the other complexes. This means that most square planar complexes are low spin, strong field ligands.

    The splitting energy (from highest orbital to lowest orbital) is \(\Delta_{sp}\) and tends to be larger then \(\Delta_{o}\)

    \[\Delta_{sp} = 1.74\,\Delta_o \label{2} \]

    Moreover, \(\Delta_{sp}\) is also larger than the pairing energy, so the square planar complexes are usually low spin complexes.

     

    Example \(\PageIndex{1}\)

    For the complex, predict its structure, whether it is high spin or low spin, and the number of unpaired electrons present:

    [CoF6]3−

    Solution

    With six ligands, we expect this complex to be octahedral.

    The fluoride ion is a small anion with a concentrated negative charge, but compared with ligands with localized lone pairs of electrons, it is weak field. The charge on the metal ion is +3, giving a d6 electron configuration.

    Because of the weak-field ligands, we expect a relatively small Δo, making the compound high spin.

    In a high-spin octahedral d6 complex, the first five electrons are placed individually in each of the d orbitals with their spins parallel, and the sixth electron is paired in one of the t2g orbitals, giving four unpaired electrons.

    Example \(\PageIndex{2}\)

    For the complex, predict its structure, whether it is high spin or low spin, and the number of unpaired electrons present:

    [Rh(CO)2Cl2]

    Solution

    This complex has four ligands, so it is either square planar or tetrahedral.

    Because rhodium is a second-row transition metal ion with a d8 electron configuration and CO is a strong-field ligand, the complex is likely to be square planar with a large Δo, making it low spin. Because the strongest d-orbital interactions are along the x and y axes, the orbital energies increase in the order dz2dyz, and dxz (these are degenerate); dxy; and dx2−y2.

    The eight electrons occupy the first four of these orbitals, leaving the dx2−y2. orbital empty. Thus there are no unpaired electrons.

    Problems

    Exercise \(\PageIndex{1}\)

    For the complex, predict its structure, whether it is high spin or low spin, and the number of unpaired electrons present.

    [Mn(H2O)6]2+

    Answer

    octahedral; high spin; five

    Exercise \(\PageIndex{2}\)

    For the complex, predict its structure, whether it is high spin or low spin, and the number of unpaired electrons present.

    [PtCl4]2−

    Answer

    square planar; low spin; no unpaired electrons

    Exercise \(\PageIndex{3}\)

    For the complex ion [Fe(Cl)6]3- determine the number of d electrons for Fe, sketch the d-orbital energy levels and the distribution of d electrons among them, list the number of lone electrons, and label whether the complex is paramagnetic or diamagnetic.

    Answer

    Step 1: Determine the oxidation state of Fe. Here it is Fe3+. Based on its electron configuration, Fe3+ has 5 d-electrons. Step 2: Determine the geometry of the ion. Here it is an octahedral which means the energy splitting should look like:

    imageedit_2_4070988834.png

    Step 3: Determine whether the ligand induces is a strong or weak field spin by looking at the spectrochemical series. Cl- is a weak field ligand (i.e., it induces high spin complexes). Therefore, electrons fill all orbitals before being paired.

    imageedit_5_9585269312.png

    Step four: Count the number of lone electrons. Here, there are 5 electrons. Step five: The five unpaired electrons means this complex ion is paramagnetic (and strongly so).

     

    Exercise \(\PageIndex{4}\)

    For each of the following, sketch the d-orbital energy levels and the distribution of d electrons among them, state the geometry, list the number of d-electrons, list the number of lone electrons, and label whether they are paramagnetic or dimagnetic:

    1. [Ti(H2O)6]2+
    2. [NiCl4]2-
    3. [CoF6]3- (also state whether this is low or high spin)
    4. [Co(NH3)6]3+ (also state whether this is low or high spin)
    5. True or False: Square Planer complex compounds are usually low spin.
    Answer a

    octahedral, 2, 2, paramagnetic

    Q1a.jpg

     

    Answer b

    tetrahedral, 8, 2, paramagnetic (see Octahedral vs. Tetrahedral Geometries)

    Q2.jpg

     

    Answer c

    octahedral, 6, 4, paramagnetic, high spin

    Q3.jpg

     

    Answer d

    octahedral, 6, 0, diamagnetic, low spin

    Q4.jpg

     

    Answer e

    True

    Summary

    Crystal field theory, which assumes that metal–ligand interactions are only electrostatic in nature, explains many important properties of transition-metal complexes, including their colors, magnetism, structures, stability, and reactivity. Crystal field theory (CFT) is a bonding model that explains many properties of transition metals that cannot be explained using valence bond theory. In CFT, complex formation is assumed to be due to electrostatic interactions between a central metal ion and a set of negatively charged ligands or ligand dipoles arranged around the metal ion. Depending on the arrangement of the ligands, the d orbitals split into sets of orbitals with different energies. The difference between the energy levels in an octahedral complex is called the crystal field splitting energy (Δo), whose magnitude depends on the charge on the metal ion, the position of the metal in the periodic table, and the nature of the ligands. The spin-pairing energy (P) is the increase in energy that occurs when an electron is added to an already occupied orbital. A high-spin configuration occurs when the Δo is less than P, which produces complexes with the maximum number of unpaired electrons possible. Conversely, a low-spin configuration occurs when the Δo is greater than P, which produces complexes with the minimum number of unpaired electrons possible. Strong-field ligands interact strongly with the d orbitals of the metal ions and give a large Δo, whereas weak-field ligands interact more weakly and give a smaller Δo. The colors of transition-metal complexes depend on the environment of the metal ion and can be explained by CFT.

    Contributors and Attributions


    6.10: Factors Affecting Electronic Structure is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Kathryn A. Newton, Northern Michigan University.