Skip to main content
Chemistry LibreTexts

3.15: Solutions to Additional Exercises

  • Page ID
    182867
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Structural and Geometric Isomerism

    4-1 a)

    _gqiu8xBan2TprfdO6LgJMHXjjrzgDL-D9KUvoWqdX-zC7Ln5ouIUN4yltwRiDVOx42vQeOiheWuqVJzXRoY1cS0_9giIZgZqo4aG2gaCjK85W9-BkH4Ns4GgD6hXKjN2sAp-BkKYr5JXOr2CQ -uUB6zG5pcuLfw-QsOYlgjFKZ4UF2pYUHsxNGi0F6gdxBzVOwBhUwTcjBhdZ01E4YiNIweiOkgZrgAwE5Qi3shx7H6-egizbEqN-GGAbWcuGWjS85kCyLz-7SZV97Pwqx40jJRxdO08Fd3iGHA b5sabMMVckzewAumOFzSvVnSmOMiSPDNmdc7pduCLBRS-PxqZXIIm1Qtt5rHBkfCAEPNLu0LJeyLQW7DYeRMlhcQylKcFDUnC7ivEEzNv3tBxAAxW-Ij0XSJpFGjWlV0vc-zGEh-rWLu5-moIg v2tW-PVpwOKEb0pJ73mL27Irt6JORMwBSpsPKBZk3Op2RGwC4Jh-4Yd-FBi95aa3w3V_HEBizVXMYOrb5nM9GTdejhumeqaVZWGm3U5PtzagjnVNNDlHKh48m3pBtZ6WL3EGWbdfQ55KtiBVLQ peLxlKH2YpdbRdIwrbZnT4wLmi3obZrDP5nkBBWaVulg_ibGNVAY05DhPLtTDjBVgRqxajjcN-juaJ2852At3X-lqz5wkyIUD53GIAt32EeRk5mDBlyqlu8pU3vhWGmB4PDLJKsdiMnjgivY6A

    b) The isomer that releases the least energy is the most stable, so neohexane is more stable than hexane.

    c)

    zdHe1R325N1zBjn9X1cEIy_0Ham4bfJ1mxp5wbSubdFWsfofKIcmP27RrJ_nbeFv7vErUhcGsXD20jq-nGtZP-tyvtC8e8AnQeI-zyHy2hHCfWbt8NAC2rksji99a57vu_Q_prJLIR8BoTNnGw FKhSHOqdS_FLWE5-7F15ofpXu6BSulPvkLDAEsPLMSUJopA4ra5yrlzLZeVA3eRgwrOK1nlsIsEIiLC1gDwF8gT2mMfbw7hBScEl7LZbRJGN0FoVx8mEhMVjW8h1WIHG7XvpCIdwitwz60zGzw 8acxKMzmMdnWMFJOrpcM-Lzt7t4ycy6VqrRViL2BOG7ddAB5L5AU-7uyi751G1RtcZeoDKSJDNEqXCEiiXvhZNj1jlLyKh8tASefsSIAG42E0llLSmC6InkJca0Rn6rvh_9nzi_379e_dqXXqAfzd1-JlTXs_eZhPnugaBu7rSdGNSuQp_JG8GUL2t1OqYyZoYkjm3OIqx2zVmUzX2yO5217ogwGb2trXEqBgHNwyKAqulaj5Dy-V-oonbbqmvcYR1r1pxoQA0rUczlD1RcM2jmN6M1fUnL3V-JA 0nn7KNtG-bDoIUHmpe8_Cf8ic-7TwRjsb-vHTM7kxeDjfBf6-QUKLVH-hRR3niLvuO4KSD3XKDMiym1PxFQ1TPVG_Zq9qkRf0nSR8t-weFGecs1Vz9OCLNiHUtFo-M_iPrHZs-f1ydv1W-fL5AosdkHxZszBvyB5frH4RDCC-vfpWyY8H0QJaIbrClZM9307WKdDrx6QNRKxLT3G5DwZ0Y0IYMoJmuiLtDfB4YVPIWBUxltRVLADIYCY5t2e5RwJwy6LCjPFcKnrYpOcKN7hPDTGh1vp23Hyvl9g

    4-2

    a) The following structures all represent hexane.

    b0tEPATuZ5tQEP0qGCwkQc1LeyFMZPTNMHZ6Pq4mC9dzWScmj-eTQFpwp4uGEV4HpMbcAxTwO4wAWescr6tT8QCoM7iRcpRXxJLgFx_3p_rw_vpwl-8sHYPAo-9WmJqgOlRZQ8VggidVi6LsEg kFbzf_o-C9_QzhPFcIzki320ZzMghBg9xRyLyVxtNkUSrO1akb9yHc_-Ts4a99kCwLz8NsbTEnQ3eyd57uNW_1K3kQxgraPEIwWjkjtTxpTWra9uHO45QcW4VAKTGEHH6fKjkSCYj6eJFHTGbAWQeav_PlHgmXJ7vsKHS6TmQ7r0cwCXb1T1c5E7CxGyPvEpE9khex6eNSBoNPjoPnmLRDetkiM2uM4GleOm9cGzFHUgOQK6vj3jYyRfG33HZrUQKLvrH5vHJJOEH3yxvPIa6j2LWEVFWiJJCq_Q U7L-YPopTyoJNkBfHhn4MVi6jodnxQGitCus5Do3bX_5oRnCNpQ4jwXhaGtI879uth20AseZ_PBvG2zTsuMUVcvpKn2OY83nsf9t0BYZoGWn52uWouFvlQIT9XiOrj7LwS9NE9GthRC6RYoAHQ

    The following structure represents 3-methylpentane:

    RsvgHsTI8-rjSSyuPmsCUnDVxKSVk4AvZtJ5f7EpydaRG9gHMfXkfTS1niK-Fi9IAJdYrivpFXcLmJntHONzzWI9DYCULYXFAJFY7gV-Zbps56fUMxQZv0DIxXAo4qMMJTxcbjcoUBUe0zukRA

    b) Both structures represent cis-2-pentene:

    ekikx8P6RWVUpBUmVHuQImVaUAHWWuKN8s6lrbV49HMBJvXUeDwGbbst_QEcatR_e_ubGt6_9ro81qWzL_M_YJY2mCcETTqMy6665M19TNRb1f5jhkJX7eDohGxrvTADTQ2mvvC3kv-V2ew7Fw and Ws6T2Ozo68XZ8NqiiVr70wRCsOmTZcS01Z96OeKvOUjhXw6vtNkqpXht50DpCepN7cA6LqpHs6IfMl63NPDk0EZbU058yUg2YSz0YHRuIvVw5IJHxWgqXwr9QPHoDn8-fDCIvVEdxIsN96NyIA

    Both structures represent trans-2-pentene:

    11aZfH2Wfgrq16bDbTficcmTCXxVaGfRDh9HHkRSaIB1YNC93xtzFbWOsJ5FB4_wfEkdqRh4PWhP1sNsYcIJS9tJM1no431aERkDJgLzbcmVN7IaQzKNjeTFJqTeG3EgmCPthjR6DWKGt7BeHQ and rawmD7d4pWpi-pT5lDgkuY918qBYFy-T6H3k2Zn6r3vT0UeCg0L0FClAcjhlSKZs7oOHeUK-gvAj3rtot4KMyoFipKwCWzZdJaAD4ww01aLuR15ACF4ZlabQbg7bO2F09Uk01Sloofjcs0WG9Q

    Both structures represent 1-pentene:

    xh84BzAb6e7Wdp_UqgwURPpJitLyvPW6T_oclQGsdQzv8F0Jc8ndqMB-ZIe0tHA3rZGG1n9lRi5Wlmtm15i8BQoj2gIFtCTIcmUt59p0WzXLcpNht2QjLTvBpuowBuccs79FsvxkyOlxI32Skg and -yOWW7aAQpkUiqsBdXV8FFednTWvdhPjOEg1Rk4cZQGSTj0ZB7AWhExe6vCtfRoJSDvQb-Z5lUfJATTu_UA94I4rFkJYKNOMhbFKNv1E9RK_jZP8tnW29NVWaNsrUayrUrfNBmZlTcPmyVgsdA


    c) Both structures represent 3-ethyl-3-heptene:

    WH36WhfayYLG1waYnEwvMMoLfwFdRHLinxQgJhNv0lwCIzUssvGN5xQtv9ef1O9FgVfSzarvzslDhbnT-Bd4wz7fO4id6LS0FKLIrhz4i2iXeWXmmaseTHcnza3e5-6pByu0pEU5X82yvvU0LQand c_fFM2TRSvC_XzEc8_XP2qSDY0hv2HaRy1onSqmX1TfQEkSl1vTjQNS3Xo0RxIE01jtcIaawBZKpMfU-GCmdB9uPxNDfBxqyU-2EGM7IEndTJBfynuJky-wGZtIAWkRjf8Nu8ZuQBKb3yC8dFQ

    These three structures all represent 3-ethyl-2-heptene:

    KZBxxyzRNuRbLV7QlOefAEvYBDORjfoLcaTNk1IWvhntfBFkeFsQ0ycp9oSmN-G8ZKqcts2LFMW6REv7k8-2cKcMno6dBZdxcTY7H42yNeW0un1wgj_-kjsdApX2OSoNaowyFmt-QA9AV5hKzg Ev8FM-XwxzuLT-IQHiBQws8S_ynzvydy2fXfjriRYJnuLyLc66XKjsiFx4iXVMpiuSDNEOwwWmMXAyuNXc2YkokXJu37zQkBEQYMGjZlMTqqCwlLroLxYA5fsIax9EX1yFmgB_njviaRZ-oK8A 5KgF5tEsUlA3WRDORmivaQOxT3heDssJi7vins0ulKfx81xN86EVFR-_Iwtdkzc_hNFJBo36CefCgZ2pMu-CRkAzV1TWYxbMzJLqECbMu8q1Q-nmUkmI0TPIVZUJ9Qi2KH_0rTq9WOq6mdpInQ wtkykrRrTNlK0SAKqYRGKL4CiZesA_oOlM-HqRgN-wJRVClmVWzMf5OEJl77SpnzM0Ct_mzvQL2XmG7W7gD4tWN6LxLg-mzccIuUpn1ow-6e6tLMwH9ss81VU_M0uibyAwn7kTEV4evC4wPHiw

    d) Both structures represent (3R)-3-methylhenxane:

    CRTYiFG2aw-HIuBLFiyDImOhpCDHkRzOZOyafrzHxqSuRx-qStmnGqFFTn03OGQiXxsW_A-KY3Aa413D9IRz4w7_-bg-MgSl-bXtsVagSpz0xRKUc1-1Zr5UuhIYYRXXmgY6o9O44zGIFQlX9g LVsJ8AHEXrq2JPfoa08xLC5PDcjYR3KdYZODyeyAifD-44zscEQ1lFMLJcGL_L6Xcr32uCavC_3iQtC0beG_M61ifG8UG4LSUAYF3fVRcMyOIZfejGdSfFvFgjAJ0bZH-xgZ6bp0M9_rvbT0BA

    All four structures represent (3S)-3-methylhenxane:

    F8ia7bXIPsT0r1MXT7KAyafa1wq_JtmFJ6PHw7gSlCjqy7ASRYSRl4HR5raJIz90_wUJ3G5cDM7Uzt5WvJJGpWf-gt_vlvDzju7s48tPPt_SVLktr4tJrRdv7c-DZcATgycF1wNhN5fvnaYqXw Gek1ZydwAFfkkXb6_mMWFHTOvUA2_X0zGDIuO6cBvhFcLM4lEj5-qahDP-THo_d_HWGz3FDutoDQ6XtXYJGBU8DuzQ8T_ee2E_3VXg8TzQg_2G5cxxEwBOIx8JLg59r0PPuP8okR89A320MeXw CFa7SpAQKhNtk_DsZuziHTsrxqo8_mow4ZLHP48YwAntd9VyH4JSSDww93enSzvKKXDnHLNWyNgkwMm6nVrahhBQlTvFcmMEDPEWZOWE6_2TQQGsJMgKTPenxpJmy6IFHv3SWNdXRjR0G3sgpw x5clxE_KuvHAdVWQ6CZXlgs9-lbQfcZuNCPQXtliJIIN6dmOYuRmfZD5WaJCXmS6zWLV9zrh3bwCBr7J1ge2qWgNcqIDRkcP0qd9VjbjrNb2eDWlX4LcM3z6FlwitoUe_6LD9ArJ82dM990tyg

    e) Both structures represent trans-1,2-dichlorocyclobutane:

    P51Ukv8NmVC5YMhpc5wel4JA07dR2HtpZaGvY-nBeTJADhUkIGZvSxh72SHVY9ELmL1xSt0QdTcnWZ4242hV-BBPuN_HXAmC2fLQ95Tep6c5dz7P0F1yO5_NFNgwLXoXnNAFC4NGhONAHKm5lw P95VcOmgfaE5VMAft5D_uXpTfyxpEQ-h9abmQPymYZyc65J52Pw2dBkB9dKUAL0YdIBHy4ADLOXWyHo3Qr1IfdrxVUQJk8GZO0euMBqFneyarRgarQ1rwn9IeFsRgUMeKoYfeb85H5TZAXT4lQ

    All four structures represent cis-1,2-dichlorocyclobutane:

    XbhKfWhgiJrq_O5x0qj2YFw_6-GaPoEyqA-pB8IsJKgl2ZNcYYWEMJAljtp0gomE1gCueW89sFWQQvgu-Aps8s9zs5R6LkP2Hm-QeEGYgX68ojLYX65nBwYHjz3XANH3avRHZebAe7HMRWF6UQ IATGKCVBD4U2WPBHohHhC7RTOUWYizYBtTOL1DB65oZe5HL88dhP3Ny-DMaQL9GzQ69whgG-qKfUu0P4RHe4nin3cx3GFPY59EC2Sg9--VAcdAo4Yk03ho2282AChFnU3GTA5dzRcCHrw8ok9A 3plgPn1Tmh3hrVyzT1im8KZWpTKXaQGJlt6Kv3bsBybXeT06oJFmbkrQjYdr3Et8rQ4k1IbNBh42n3856Gs6q9MqbkhPrjRrzhn6AKYZw3psOHgBEH0RArtK4v7p-iSfHisiOZ6utMrLsD_onw YHP0KE_9Gq55dRSIxC4VnBV-eHArAoeGatB6BiY81j9XUAtL5Qh21CGVHN866MR_XUZm1ohXkmQ-idQNfwA-KMiguKxIqC9cLONzpWehioiF0S_0sPsaWEvP8NL1vrQIx-C8dZjEAPHlQXI1BA

    f) All three structures represent trans-1,2-cyclohexanediol:

    PdhzfpMTeq6QNkCwC9ycjapnieZJSGV3s6_xyEbifdgVb1sl2l7Hmd_6IFIgoGciXgHlUdu7xG1IGUIRU10awA9rNBn-3X8KtzFHpfdng2xJFIif0N4tDzun53-WjO_yrcbz9L0gAvzzC_xY8Q XLvmVMxtNNsY3njaqOEHwkuCWhh-XrAfaXHgT43KR7MXq3_K_v4llIhWJFfqowIhZ5aqTAdIQuoaC-TvgR5ba1J9iElBaNvcuIQK2w24Cv6yqsPHyYLfkvohbs-6lZOak8IhMQx9SNPTfWN2Ig jpOm_jgoG2aelUvbtoKTnPrNXH78DVEEeX7ZZl2VwQEIbfhJSbcC1A16GgxRhkW6s9usNQayLK-pfLOzGrXnZ2HXjCSNuanhAF07ZylrvDizGik_Qr1oLAcaeM0q95xqlWQqTCwi2TJhlPp2tg

    All three structures represent cis-1,2-cyclohexanediol:

    Rw-BUDvpJPE2p6nIa9cHsDfDV-RsZGEQomGkXLSOkGxIRn5wispZBuw2TqV8rciZffUapLoZGNHmVUKKlo706mUeUyug9WjTtzvcpcYdD_IXy2k5NaF1z3-2NPMxqoqLt0Wy3p9IpLeLF5PhVA Pi2MxH7wIIw4DzxZ16-26SM3Ml78qXjwegtrfUl6GvkMJ7fWr13iOMdafFLL-S3b6Qmm6YnefBQvWGMiyK4geT1hrUFABvkn-dmlsh4TvCG-ybCZj0pIScEnJ05XjTckZqn05KsV19Frb7mTYg 2cCByWX4GYPA5ikxCvDa1GXUhw3MVsacOYUSD65lbOjEF0dZfdXf_kClbl990oiGIN-uDqpd5TTVyTHqH1n_9m7ufwp41vmxFVuHs4SVMNgPA_ztUw2ieCacx499I_uhhgNdYSqvmr6R247lzg

    Both structures represent trans-1,4-cyclohexanediol Cis-1,4-cyclohexanediol:

    l7zOgOTD7YPN5y7QEOdyXwjlHnuo2NbvUGrpexDsGOx-WQpW2u21B4KVU3nWeLCMd9dcscPyzIwf6F3jQwX26nk6O091-1vtP6GDzkcxeuyOYU03ZjOGBJSSsZrt_RAvct4aKz3aQEAuKo4Adw RPcHewOm1Ana2PKO7_Nel3Oz766dtuyW-FASNXSLwPf2R-eA0o8EIBTO5ZwOZMb63-BoLl6QUHhPmrnClsKn7paplKTmtPfrBHYo2b5YNqeZXnfurayJu1hOHhohgfaeXvOdPVLKQjz2zc5rDA

    g) Both structures represent 3,4-dimethylpentan-2-ol:

    RZ5yhHhdKfRKS00ZGTCvDTKsgRpi026LJtb07J6tDLVPE_t50AF8Nc-DItHz7QjxssBgwkK0pqDx2fZCzOVOTmKYAVw39B2hpdP2OkSeUne6x7VdKpT7wNHeW57TatE-49vxvZIo5sbqeHD8tQ

    All three structures represent 2,4-dimethylhexan-3-ol:

    bJ1n-lowjE9GZ8MOtMt0dHxbKLVMazpYFl61GrjQe9rfcKj9pt2b8UETfYwSoR62yuBnuYfl8DPjd9N5yrzit2_IwK56kVsUCiijvZeb2yy_r3izlawJcfs5dgHdr5nRaSAdQwzDead0Y0gUlA htfz3jQfq9CFQIZKQWBqcph_wklnl4JfFpAV55uvbcSUp9YxGkDbnOYqmqROTJOCNrilZst614FzDhi4gygHJ5oCVeCDUSrLilc6mjO8Q-iS_aoQl6og_InFWDLBSzAvvdq1PCaIsnpxsycwpA qo_YdldDVz0nvoEtq_rbqxERm7Bg-PrPk2M_Yn5oH9A6Pv6eeghMvPsfIlxlsMgxJa6krb87nlQz_b1Xqyj66JmZ9bx-mGbCO_G0Jjp9zWoHPZ0RtS4R4tsuThHSd24-1okZAhBi7oEfVMux7g

    4-3

    (a) a dimethylnonane

    i1qyQcAWqNfyQ7qOwT4m8RutQ7TeaCaeO4Wpu3Uj5SAEJArVRZDmql04wynaZUJHzhbcWc3-LSP-c6I38pY8wCAOlzlGM3yqeEf1ejbbv60HQ8_K8IJHhXSyie_gquJHnQdINy5URp_zmAjbpw 6cKyMxWHyNXs5S8qNQfJ4B7GSWVdQnZfWTcEKKcRaPW4u6_QL0A_wqDpMr-Yq9oZPIdjIwgGEGNkJEcOwFv2-IIhGXCYUQq2OxBpUOF_eDBMqRm1HdtfHU5j736VR0Nr-ERCKIPmghGT_oNEqw

    (b) a trans-dimethylcyclobutane

    PuBj_sCAGHbfXkhFDHF-6VwuhRdxuuH87vS9q25VIKaAXwIkRdr2OkqFjnNMKgL9MHaSZc8AkEX3UCJy4FdPT3iURSQ2V9dtzcmRPb4_qCcI1uNhMwH7ISFcoitf7_27_J9t0osnGljuN72ytA 6chImBaZFQpSP2YV-Fl5xBsjigmKqWAqfxjcl79Q1bPJ0gDhtCU58sq6BOuqN6UFvq_hLxlLDfo6VRK6pM6LRoJGMxKURSq2LP1LCObcj1k5H90ZcizQaM4-fjhlR8pxNNoI4w48dLHYGHHU2A

    (c) a cis-di-tert-butylcyclohexane

    UhDZc-gxhlQXAudXnxE7cCecFMUopiaz2oiiLOxCQAxZ_zjTHiCIS5sDbq5exbb0EzxTG9w3OdqwAVfnR8uQcYdSgtxyVZDkQV1Bdt1vyxMGDSGKr6YPNN5IBJz-_zZpfqH2wkCqao4B1R2LkA 8F3FttYaho12AlOLXinmOYyHP4nAxeI9I7Sw64g2oQvPWRZfjHOMRpzywy9gJWh3zLqXgQWsI1HMUT3pOWV8Ty4sJRz-M5OJZBoVF5C1FiZH3b_M4eakMDq3ogrAKlp4lybev3SsJOADbRv3Kg

    (d) an isopropyloctane

    uHTmMPNW4Z4eTRnY8U1Rqwh5ght7loPI5YGcDtfwj7KKljrvcsJIwDPy4osMpeqBW_QgfSf-xMlQIJ8EL66KJ82C5lC7pjLo7SwBwn_t__R-BClRV1a1xdpYUjmKaV3vPBQjqXkYF8VUKXmmYQ GYZo82-uMQ3DAwRQPc2uGUoV1GF4RjGH_RXpvvkacdzQQ55XPugTpw0JzEXGifcEc4TWTZV0bpoQSujwomKqy7DX__-qxAanklbn6PujToiDeQvE6257L0BrkFHmtZHkY238vFU7eXLDGUDUZw

    (e) a (1,2-dimethylpropyl)cycloalkane

    ZoFwE8ANMvWh_FKh-RzYdrxPFL60e9ZLFyYpFfgivR6ITOtfioa0Y7sUj3yoUxb9KX9r-30b0XvWSvVW8XASoe-VsGqcuFPFk15xikVQaO3j63ND8tcjhb2PAfrJlU-k5I1aEv6A3IJ-DLllIQ S3yv2FDNi8WBUMNno5gz54fuN4g7bZixehSJiRPMP_7YM7uXuElV-aIWJeO1pcazLriuuS8GZBnc6Ueor9YOVZdRSsG3uvaKfv2rzsXKJPy-YO3k2OgAHF239-pE1PyYW7bNjaw-QK9KWmkf5w

    (f) a bicycloheptane

    lnxyCj4svG-JFIK9i-N9SqfRx1wyoeaP4EpGf0aS8wPepH9binHfuqG9Yx9hRx6OePnaAz_xyQ4IeMWHZsGVUaXjj92WRwKZEt8FoI0hIKyPUofuF-5e2M1J0Z2_Nodn6kTmhmRbxpSGKV9xBg mbpSf5sdAAxs2N-Jmxnq4TVi2RGp6M7wKj9YgrErsburpcR1-1upiugRKmqK_jIPv-xT4k2yF7nz1mJn3anqKo05e9Zf95PJS9KPl1sHYQpMcKPfBJSpavyvLyPfj-V5cBAFWKIwvRW7cRYCvg

    Bicyclo[2.2.1]heptane Bicyclo[3.1.1]heptane

    4-4

    OtmRooCJ5Xv9ZVcjkv5rkH_BS6SBxTWIjxkB_6bte1ys3lSG9ehMI0e76Xx-Z2HhNL8iXkyUkplDiwAeROh9RUTbJ3BwiXliKOVf9G1cheflSOmsaFqqA7ujYcLmJ7v3J3k3EJudvgNyvkdijA SoKQrcR863OYb-sISWB4TXhv0oqZa_iYjxp79DaZjiDy4dLyUSWMUVkdPY6-Zfdb2jIrmZ3E-IPZM9xAdyRZaORNYLHm5o3c_OJpGHrBHfPXjQIPnrttoh8NOah6vFUlCw1yWMAESbwTOQM2hA BUn9SmGRgFlyGvgZNhAfK2PJDc8-Q_tRm0czgoaVKahPcGSO134Z9_ugDxaq72bc5mGorXgfTKBvnGq7tGLevNwodrAhxQrbXgGEFmsWo-WODORJRc8xrJjPCqAauwIfO_jy7e8i8jowNLyCvg 6sMwd_H9aYN3UBezW-Ss46qqGcbx_lKV2HNeEd1fUHMuAScgsz7ICHI0Mkdk8dSZhy0PE5_7coaAGa0NYk7dGzMpOzEA75aof1Upqm3-jNd6MX7-sx0ac4XWpx7ATRfxPjAjl8FUjHLPrZQ4PQ aOMhHOULPZm44k8ZJB_ni81sEwJS5UUyv2xgNWiOHgJY69HzAkqcy6EY2R30mCxnQclyMWPBCP1ZGJ8jiAL_ofXRLBkM3QgjWG-8pCqZfzDwnWOczOiSRd6gQt7km5M7NR0bGPFA6omUx5XR1A

    4-5

    (a) Nonane has the higher boiling point because it has the higher molecular weight. Recall that higher molecular weight compounds have more surface area, and therefore they have stronger London dispersion forces. As a result, higher molecular weight compounds have the higher boiling temperatures.

    (b) Pentane has the higher boiling point. Pentane has a straight chain while 2-methylbutane is branched. Compared to a straight-chain isomer, a branched hydrocarbon has a lower boiling temperature because of its smaller surface area.

    (c) Octane has the higher boiling point because 2,2,4-trimethylpentane is highly branched while octane is a straight-chain hydrocarbon.

    4-6
    gLx7iXqFfzF7Y9uAIoNnzLTLTz_jQTYYN-5OTdVnkvESA0rWwMJCBKsuXMvGmgwYWj2uAmyEteXG_adTtGTuUsowVxXBdJVHDkjB1-SNPk7zPKY2LNXS_0GVm1nZMbmsaB1uulGhIAGCLvn1cA0XU3JfmidA0CgpdvxPwc-IacDwLUhAEkmesV5rcar9W-0LxXz-Y9Cp7p6G0jaQy05bIMYDohws-9j2FRyzgb82FAvdNZPKCDNi6sd3y_RCEr-afjNDrrYLJ65bozp1deNzb7OetN7Dh6seVvngmTPJ6SFk1VCBW4WxPP8tE-Y4wpFMVqXW6jsc26vC2cyIDy7Ab2oA4RyayeW9pKUlr0hvIkKEoPQmbYbtEJe4Dc3-lReZMq8RDPP0zheWzXFlmwIh7Mm_mC8QONjIEddBfQuJF4nyFCgO48RksAfRwELdBu6Ty6wI-BJn0-VPr3kqPzhFrkR-hmg6Z3G8XBElkX2GB5yIxs53FLxPYnyYvJ6MwgDhQYZ2ugxUCCvEVP2hYNH4B-RbgNc1gexZlUw8yh1p-U2dMMloVieiZkTXv4iOIpV7AvsyfUMQ

    4-7

    (a)

    B3GVSi6MkVNjTBiLMXJBXkPUtRszvERoRuab5LDKVOAmyuYH9LdURjgf80N0HrX3mit2ZigFhUHE2Kcmcjk3xIZLp6h1JEdD1Xew3UtDchDK2MgnWOJxS3QnSt_4tfAVm-rDPy5j8qXcnTjLdQ

    (b)

    x9ZKVZV9aN1jlTC-2-TyZo8HWZxs9uUFpSaMpoMXef0jB7r-QiYeD-I4OC9lD5UNbG1GHSeR-lAqTV7w_6t2mbobw3eu4HxPGWJOdV8Zn018H0-3WCaQHM9fnDrfHppaX4g24AOepbdBPGnnnQ

    4-8

    W59oywsrFjlz4cVPy-FNZMfI3uNdM0t-JzM3GowHVYU2wnYFyxrugNWD1sZLHD2txZdmOVwPVS7wrSSUUvWCAwIsVuh-41jRSh_CPUmvsReBAudPeA1AUk32ELNPe1LMMzOGqj3KZql5dm1RSQa1XfqjaSSa52dKaTKqpQBLYSbXyPfi1bJLWAk53WObeUsGGwT78wHkbYDWEF-5YdeM7lZUG5Np2FkMVp9kGCSlsU90BIoKDA823451VPrz5eebqslFzr74xbr4TXMiHspr0I10W7T3V4lq6K5g

    (c) The first conformer has one gauche interaction between the –CH3 groups, so the strain energy of this conformer is 0.9 kcal/mol. The second conformer has four 1,3-diaxial interaction between H and –CH3 groups, so its strain energy is 4 x 0.9 = 3.6 kcal/mol. Therefore, the energy difference in these two conformations is 3.6 – 0.9 =2.7 kcal/mol.

    4-9

    (a)

    IOSsJ1nvn5ZNOJVjye0eUQ34ceeaicEekJwTxhdIT49jyE2KYvb-jHTEzAQP1uJYcEwlsHOa4HUFIpXwkqxKkULEQW6wWTrrFRxQsT2AJGNqGgqSgeRxi7ITzilAuX63W9k_To0IUanAtMKSAg

    (b)

    0sr6hKv_RR_Jgtxf8SfLCIlNAqZ2TpctwMX0fzz21MxOYjO43aN-EjLVP3YdPCWzXamPbxC5XnMKnmHGC3CjqJL4d92dhuDejjAacr-BNXWv8YFMNMLYlQtnPEMoejrwZllfpdqfMZMqX18Glg

    (c)

    YBwWAs7l_p5MuWjeRaqUE_996X0rBDXbe-3houiujKOT6fLMdEFWNRmWr-KGBIaavpdcTLb49tfZzRzdMYkONkAy15Ah8b9DjVuBLJ9KoXdwKa5bgx8yxHa9rQacAKeO3PDXcjAU5Kogh_yDmw

    (d)

    cnhelP4fFg6_m1TXvf3xn4BZuUBIBXMMDdRC0C9i2LQ9tEFe8kgst0TUslPHij_bTCitvvFWpURS3eShYsk8-wfZ8wj6zX7bM-gI4rq6osy7nOn6fWKQnQk6uZ0xGdPsdwVVNZrAlrVA3IyGTA

    (e)

    2Ef0TX0oXadH4vtSct3dkQ7enWa7M5fUuPDPcHJ4c1ecCFvpUdA_UsjCjnhDUkD99myW0MbUUNcpdG1GYYeP95lRs204jiwaeUFh6W4mbuh54wKcR_b0MQ3SauAWcWf0S8f5hmcnxij67e-yVw

    (f)

    rAZOnwdjI57GJ_QDpeSHev03Otva8pjI-qfAkWrA8BC78t345xx6TnfIZJQ5AgoAiuITDPvCdbk9YjTiF4vpY7Gh_taIj6VZdzgKPkx10OSt5IioG7aOx3SBZvgA6VZNLYZXMDL6O5KiSExaKQ

    4-10

    ZLkIwQ--6nF0gjmuyQUTGsjvS8Oj60Ir8W-FfJYtH3TQH74KhJeqJalkhC3ugiV217EtCkjhTJzQ6PSnAbtntcWiSKqjTv4G3u1EToVkvYF7ZyppehoGylnwykA5f6yVzBBuN3Jlyg8RqTqdMg

    In α-D-glucopyranose, the hydroxyl group at C1 occupies an axial position. In β-D-glucopyranose, the hydroxyl group at C1 of occupies an equatorial position, which is the more stable structure. So the β forms predominates in equilibrium.

    4.11

    (a) QdaeqLpNHhzs168Nf6oxC0dQGGJ2FeofHjiRY8urKJ_Y-3ynZIXCHK_tkyEgSDGlRPeR7WF9zYlIEAuA4Jw0R6WieuQFF1F9h8pcddi_S1Jwd2eF_Ed2TFMdUI384Q9ka3UZyazXRhLBfoRF_w

    (b) ztbFq_YgD9xzCRiTuSt5pEbZWff_J8U_Jils3iwVu54qjtqvzwYRh5mWMi2d6PMXwZohcNVFZcy9XByQPVA3Fu0bRAwNOPyRhTKaVDRWrsCjCBwa5fMXLV7oMug5A8fZUZ1vGGC0KO1tovUG2g

    (c) Yw_1Pf-aCai-awUaVaCFzLt5LIF4E9Ns2D3DstjKWsjm-H_fxua36vDIBQg7RaV_Ob6KhHSo2QHoQQaLHvDCcOCMD1p8HlTZ44HWtOSuD5adVGkMvkbTtJGzBgwqBfNKVk2wlL6Qh66cHzszDg

    (d)CKyNWJwTjA7FxwXdW_sG-_t831eYd-dGs7_IqG1-UI7raD1OnNj4mME1Kf9UAGOZ4xE7zWSqgGyyPg05kEYxI2AQTU_buqxroUZR4VlgW8i6drnSP_E8iALLTMr4EW2oEy9DhrNckH6D2cUwKA

    (e) mdq_Q29lepSRYvx9b9Uw2gqEkTneERODRExw6xqSQNxC4eI-AYagbt11ArPdi8lv60K2C8cM0MVwLAukbt-pyZH64p3ePPvJMQD1a_5mMd0VUT3-4UjXqhybQIxwALK_JE6OfJrKdgC78rjslQ

    (f) Lz3MdtNLSsdUw632T0Oc5B5JHizhC2v7r0L7kMCaEFx7uVgimLVRl3SFRNfGQweV5zU-CE8Y9i3N3XJtkbOVIv_LIzYCs7HIAg6bQ8jZb9sWb_funiBb20NDmUTge5TP0FhT9830KhdAQctwSQ

    (g)_PSZyZlNtOKUGCUIiwBZJjCWlB7nazFeK475GWyD7bCgfHMyN4XEkOfAViGi844hgnDP-EaVFqm0OWR2u6Kl6pFfBRrCYN3-0VG6vvgP-dT9U1-IKAGCo7Pp3Qy1zc6B8cVJZLi6hed-c12y7Q

    (h)Km-jfPM_69q8uJILnplBzkGrYMo8IN6pX5fPIAaDtZkLZ2MvEeBqefQuI9Lpq7YXwYknb_wu6y9-7cnjsgyyWieQN8Mo9uYNKj0dUmMkmcjIIdFLuSNE45M7wNckcxgaBbZ82vecuaaIJ5T0rw

    (i) O71O-9lGFfN6hLlj83b3ZixDL6odJA8zBgWSRzN6eZNp6KmeoEVhBB203TYzXQxoiwdg3O_OZJe-Ruw1f-M7SWIEsAF06mvIc6fx6gUAgmqe8aay7e2EOhVJBZ3lvS_ao6P-HS1b0ZgEPBoziw

    (j)RbPK0fngfNZ5hcYIYYSGm_6NCzXym-8cMTV-NZ4znhgr5jFtJ1KLe2TlIqoJia4blzc_n_H0Fq7vAaPhiGVnAzSWjzCvITJPlwgNykTJtgJbt_VzE5PLsf9W-exHOH0H8TtD0XGsqzd4WmeNHw

    4.12

    mqZKe2uV1ae4t50SW_imZ5cGLqN6yzkNeJKv436y1JOPEU_ORQuhkIEmAz6XL-tcBjdT-LmMo8M6WuKvwXVYmv9RMyHbj0YApCI4W9f2lhFmCujEIshDgOHaC1xeJnHIO-2npZTzh5PFeOH1iw

    4.13

    UUQ78APj_3bIqN9LlcW0xjFWnNptwaegJ9jCSv0cQOitq06tGxC1UIPr5yQP6DoamzG5T3k5SAhAvOQN1vV4vb4KeuPu_Y-Oh4km5mhoBTW1zCkejVTfrElFZAG3UKIRIFunH_seRVdgS9iyGA


    3.15: Solutions to Additional Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?