Skip to main content
Chemistry LibreTexts

3.14: Additional Exercises

  • Page ID
    182866
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Structural and Geometric Isomerism

    4-1

    a) There are five alkane isomers of hexane C6H14. Draw and name all of them.
    b) The heat of combustion of hexane is 4163.2 kJ/mol. Heat of combustion of neohexane is 4159.5 kJ/mol. Predict the relative stability of these two compounds?

    c) Draw and name all cycloalkane isomers of C5H10, including all possible geometric (cis-trans) stereoisomers.

    4-2 Which of the following structures represent the same compound? Name the structures given in part (a), (d), (e), (f), (g)

    a) NTo4XvTopP02f-Zs-wDEySK9H9rlsp__peAyj21cvIPuZK0adKjdOnZUhROY3E2l6E7jJvcMAeRB_zOxYtV4Vyyt2p4w10Kx3ff74-h6LNZJUyOuWMRcHkCMPGEWpYCFpn-jrdPWnWrYN7_nug QynASS_xO6uFkX7b_WHvWj9pGZqOAdrVxURT4eNeaKlNMyf4gCFGoEVpjxK3-MmhsJaKyJU1Ih0Pt52ZFgUsc_7_mtXaypczSQ2DEQopFT-oHCwv7vK6JRfDH00WYTTnCa1MPVBIlSSINAdndA tfcsrzhfaaaR1h3FZtINNKvWT64F6nsra4hQT-tVpTWsDTbHWLdDQFrSOap79-ii6Id8s0elNrOtA9sXgjQ78cE2AyyULZ2NntCgJPlLSp6n7uiDueu7Bo51PGllNV17ZpTQPaE4KtTnUCrkfA OS-eNYD5uuGtkCP46JcX0wBBlrd9YnbSuqt156nUKLQnaDELaJ8t7Tr6o5FsO_TPWDkLUBXO-KEc5_k3va_ttOZeLagRtURCLsQ3WOLZeRzqR0uEmSfYuvjrEoAsena190uVj-JJEcV-BkmMxw lH2IZCq9Ibp7K3R03_fqV3qYYQgUyAso0347KiCJ0Bsbo6ppGmEXOtTgdf6rRFN_4m0hgr-yOVfSCEfzYkO8_H8Aa7N5JrZUr_SODmD08ND935o08_qTCSIbtgJIU_azkWjPpkICceYnfHmatw


    b) AsKjkVZ_NpytqLQqcYnKXeocnqe0YCRnXX5xpDYJMche1PSJF6QrmhpHDXg5j3uxffpDKtoM6RTD0vt2eA-ITeeBhrraIK_s67tJiyQA9ydCOV_Qs-ggvgi13_uyy3jj_CHSjw7uCXpet_uKQA 6eEcSoQf-wbGbG6Wl9nev0c9qbJXn8hQo5oasiLkSXOsLOAoqaEshZ3II_kerXtEuco80Dd12HjvLi8xp3XZU_1ep-uaj4k0uWXEsYdiJn_xKc5m7I9-dBcWcCsOII2qfL-QfX7RJLKk-Oc5FQ SwFrX7OnueDd1HwyrqdQCmroTymqzddU2Y0TdWnimQAZXypCOdpqAzfyc-Ioe65zZc_bZ_jjCacn4O26vAD0Otyzy66J0LIEbokU8QXUG8ikeNowiSrDwUw3b7oTG3DB5vX7FokFQeF2V2jTHg MMMt0Q4gW-Ye6TqRTGlfP2MWKKGqDAfSt5-5cLCzTTP-kEcvAdH1egdoQnOZBCI2YFLTdrv5rmNHz2oic5ufsqjlWs0cYFFv1mlWFDJ-lY_Su3nRfLfqJRQrCNJUdCLROlnhjvzETuqYRnpV_A NrGnimogC8bXLUoVfS_5a_uKPjmhggqx8Et70FDUygyaT-FP02-Kn4w_rlhD0MtPn8ejy861S6vzQyux9SMgBVzd_4tP_vkRIHp90HvbjcY1SuH-267mg68QwaFBEUD6tuNXlhqZihS5slpSXQ cZV5pAZtgnHnbvim1nxvrYv-VZs6CR6UJ2oHb7cv8eAe21GWTT4XbR9V55bDqWz5HAQ1IGrTcBghxXiPZOCpCQMqGRPrmNrXHZqotG2mMzruLxbIpDZ6f6AJyGKZ0aMV_e8th84Hj017itpXzA

    c) bgCN1E6119j3AyiHbvMPUOaXm-9BMduYlRy977lLcGsUz1NzRC_ICzG54lda-ihUib5DdDAccqwnfFoDb5Vt27IZPuUkIwu6ocjkR6lFH80TJaZAjnNTje8TBVKKiNCxgFaKjdXCbIZjYUj1Sg qm4t1OP9OTL7ENxeHiC99UZfIBANl0UUsZEz3nYhOecMVVFWsnl3Uo-ovl61FUIrHx5khcFkYGC7cerW0lEIOg-YU9KeclZ8-WAmtNFPDYxSMFgQ3pnbw7GaBnEN4E3GEk8Wr8k0rhODUfDdvg _teRjQFs3nr3PAdbOudRzVqeitSbIw8O_y-08m-TsA8Xa9ClAxZHrtH9Mw8D6mR8YutL5vWyw-YYWqhBxjgpGPDRT62M_7ZcQdxNEKe_5W_n8X6NZOXvfVrGPwOH6k1l2QHs_iiZ_q-t0gRtHw nTC3kQvmZRcOSNc7ECHLQe294-8urORRFY8zl60JpOBL6PhG0F_xdy7_8lkae9ckGBrqI7abt8HWR52rbI9SgIifzUan1tUYcjmEaknmX-Dl9uEqaEqNKS6bnBOBlg4AZXowKjtFkSK9fs24eg VNX_yRhX87rVfolGD10uO_Sz7q0udCgOlJDmhmPMO69mDdgR0z8BI40roFyQWK6m8SwexYLoYEh80D7xnIj0c2-l2A6je_sTQ7ZdjUmH5RZueVWd-s3Ow6zuLemyN-DhRtalnYTgwsN_hnU8fA RCVWqMAqOUJv_6eibDOLvC8Kz3FWIG5QG-t9M6kibfD0DeBRkWCjpZQryeJRNHceFdEVGz1yrcD_RkYmfEJt7SjlUHAJeTt2Jyt0O-w6nydJnP7jLihPaPGVB0oEpXkjqA5-HynmEhG2lvSqUQ


    d) yjy9HwT95Ixw6AMUZzAZ7lc_0hjBFRo-a8eoo5jV8NMNFJ1TQwez9G6MX40Kedq8yScQ0hTjA1TIp7kW2D09uClvRSmj7czLLRS8s0f1zP9pZtxrUmO2oBGUVWHEtvETbLpWZICr7UsAMi2Cpw QQHthYP6qUWlAu--Yra9aFgkalxAY8dNDqUzpxq2hldcUk5Ubu9tDh4Vr--ZGYRgR5JHsSh3Z54YihVTezPdeFJxHJQl6bHhsu5nlUoJoEIUtvnSViGop4D-BO3Pkpz7aOMg6iplcmY_VptHAg 3-ip-Kv4i4sCG3cEwPRP4i_AkU9OBosdm9RfSoH_m2y2ScITSELPx27VIgrAlsJEqFeBnKdPPJ0X9E9DxPoOs9QucAUWN2_ejg4INrERANNSnV8oChBqt5JZjAZI-Dl_vr7M1uxXBD0l54fIag edE8yoRpmtaH71-q13jSFXBR8kvrG0lFwmP7Nq9Sww8nDNuSnVTb1R57vcX6Iva3IBL3PdU72IT9iXMRkb7EJgz-eujkFzH8da7bR8yhLZ63ClNIFixxfnU06ayIwT8Tl5WAT6hBjIft5YNtGQ F5Ajm6HdQZxA3pcE3csoM0pQYUKHSMwwOmAftuzNYkXFVO56r6H-2gQEMb0sKtRhhg1OuaDz1BMKwwdoAKqrdYMSsmYeidUnSyKThKsLHqptgx0MYECDrbjrzJtExIPrV-dc1dFh3eRCHH_Qdg 8_dZ520VrnX5ZPKZ1Cp-yqPDWNBir7cnAImt2mUvtdlGrLJG7_ZEfDlrAijb0ZVYn3UwuLcvFA5Tc9TXGko6pKBS8Pf_lJCOxLWZVaiJGV25NQLjlVtbWu7OrSiy68nAfreIfmuMW9N7CnMMOg

    e) S6tF96YBIodZWkDkWXxkysgS003uRCW1NR2hgklRP1hCfuaZOwHw7LJC28K8rJ4zeE9iQ4P9K6-fIdHlAS6MPOiifXeP0-VolSRqadmJJi3KO4F8QrZ_AXhgxDNiSX9UR232i92yLkgqSzNdAA RS_tmW5-JOjsGlcM1WBUwq8h3R3rVmnUDBJwOOggbe7-il1QWTlBmWlBm91iX0QuP6ZGlm9yD6BTZSPJodEk6RzavU3nDyxBtLuEon5jdoHtFxOLEBCWPzrnSjPO2r7Mqo4clt1aOomiYF6-vQ T_dK_Alal1I7VgSNlvoIGsMgTkl7-nF4F6NxlzJZxRUXdK045-0YmMMzHGa1YVukVnKBYaaJQj64SiFpbGA4OidnYu4LE87_n0DBCS-tKgi_uTkblMtMefF_Obes2g25Pp6X_8-2tMID5SOJHw ci60eCSQLEfZC9v-dDDK5NQkwXDGgvVYtLy7IHDr9naa6mqOVGYjFwzRtxJr8HMRN9yzfgjyciRJcRqeJF-hVBaEDOzi1tfWEmO37yWuRK8P0qRSb_MO6hEWFbSe1NQxHzt6-PEv4RStD6gp6A bVYYrf_nmO4x2N3dT0hwjvsacUfoiJyGX8NS8WwtQjAibUEsRR_3b9Fd-tJj28r8cQQaftrt6JasDhmnz0igcbi5MGpXTMAsFv_uJ4449o3SoaGWsSn-c80bAA8lDmEpvQBHn4wyk0C7w9x16A gqRy-YRb65L07PfB6VXGWeE6hfRwdYz8dsJ5GXEH1QabOz8GPyVwwhYoh7Mrnhhu9Vmtg4WVCPLO28PupIGyGWM4ATtnKE8IPsmIkF0JNP3-w2pQyBa-IX0NO7fdCbPFcYSgfBXgKaYPon7n3Q

    f) GBK535ic7CkdcwVCxKwUd-2n_ip1BOnPHKXVymjMGxt8rCreDScQ2xciz_DBn-pLT3uQ15gconBGSdIQi85Gx3wdbYxi45Q7QlEMl5hwfi4J2WZADdkZM2-n60u77dGsNtobE3Z1osCJq1lvmA XoelNMtf3-bhYpO7U7HUOMelE8elXlfC4PIXo9C5Ye9yAUNFLdEsBcJSL9boo49jJQyxgCah9ki-fVfx-6UE9bh03-Wjx2WpgsH1WtAPeFLQPLP7FCoP4WkLo4VRwoYYRymGIG4rEirmJzQoLw 0BqSzoDsZQORZEl8I4ny7ayBQcDaqSyMIItievsMRBlEA0PuODn2aEWpjbCI31WTdd0YhoS_7WdaW9VNjlz2g2wx27zlOFYPbhW-kaHHFYxgTk_SPwQzdDysjwWo5tklg1CBs1zrvpeLjBp40A aayUGsz1jF1rBjOpZLaUa68pqaLXT3dikD3M-Bq5568sjnTXOUANanc-MPEm19Z0bYww5n7N7-QV0K8yRFnjRRa4qGMo2LcYtfmSE5eiYqHPKBQbTxcsmlqTDOyFrjigjslSJN2ZpJ1EYK48MA f0AEYj5kKb9GshqUbXTszIgr9Ta4sD0BoBOa5r3DJhOl8A_r9vTIhDP-vt8u7RF0iKfSTbzOTlL4Zexu2-k0aQzIuJLMMj8fSc2QnJP71BkFHAYdvAwe_fgxBXGgJUgsiaOw_zg05hyK-9Mwiw H4rCCXqQbh6qQrr_ItwbcW04DSljNIne-9O51_h9MpOZjj-ZpzrgwkTvFgymp9UV2wO8odVvH0ZBItTyWyLEiyhFXeNuFh0P2LrSgITrLavUsMuVMhLmUfPpxEJ7cmI21wykKpP8z5XexVAehg Y3HnZRlGHgGoFgbjC9a5JrsSxvv3EOz6nRvp7IyfHirtxmH-cY3rdB7s5sGzoLY7Nj7YZdTsW_2Dy908dnn4Hn2uTBcEbLZAs_P4o_9LnHnbp9N4Ap5WqKEEUqhLnt3wQBzdwa_FFQ-LwAlpiA s9qO2PYGXHDC7dK-GSo-cWZw_CUEDF7FNB3lP9W4pW2qOpMohEH8FCHH8EfC-hgxOFgrupeP59yc3DK63RYlidWhAC6dNNwj9JLoRrk9jLWmtLbmFTlkQpbJRwCmhglso5V78cSlidiJhTCtgw

    g) 3mec4v7EcPljlrtadWMO2sH14BR_sBoFFKfPhqf_H7qAITmB9aiVGSK7mMFDxvYzSopEDScIprcuIkmF4BgI9L7R4VXqZMxjhgeu3l663oDwjoeW-S40TXEpSLG_t9q1_RMC5B3sZJgqm1mTAw I8A_NUQYeN9bX6bKyN6zsTBlFi21b8ZmBAins9anshElUOpDOxu2a2yeFFxN-twdosEgxKTF_85VjaD08IUdNe0M9bxM39cNiMAxVNEDLFFeC6iAMzCiqKxsASwU473QrcRhasep1iLp-tPHYw xxjLLF2maesR-UH1sWZ3Yhdq6uI9K4NeYJcAVwgNkjE8F0m6NWYzjd97jYimxFmf1qKRQO_juU_RKQQEnP6SiDpVfMte0HrTWaEZMCxuvECk9pViyc9MyPiGKj7RpiF3YcLNO5GP7m43IySQXA vttTMUE-gdh3G8qN6rpjaxQeoDhFPpeODldj1RbW2WqyvPhjl-K0TCsSkZuD9YVcSXuu7m7CdnQrK7VHXAL-NzbUyYITGx8CBPPXKXxJq3BfZ47o4W-pEuE9q1EBIaVhRVxqJxP95hEsvCPu0Q -WW2k3UJEL-NI7KsNT4BQ8Wl9bsfUph44Dc7JUQLgHydJehnWmP0YaFxZdvsx6agOxD9nS1BmM5_blyg9j3TpwIVZQFLB1CmJ8mX7oG1n95vq_Watjxhwp1iFQMJKGDLThM5n-DvXnLCcjCh4A

    4-3 Each of the following descriptions applies to more than one alkane. In each case, draw and name two structures that match the description.

    (a) a sec-butylheptane

    (b) a trans-dimethylcyclobutane

    (c) a cis-di-tert-butylcyclohexane

    (d) an isopropyloctane

    (e) a (1,2-dimethylpropyl)cycloalkane

    (f) a bicycloheptane

    4-4 Write structures for a homologous series of alcohols (R-OH) having from one to five carbons.

    4-5 In each pair of compound, which compound has the higher boiling point? Explain your reasoning.

    (a) Nonane or 3-ethylhexane

    (b) Pentane or 2-methylbutane

    (c) Octane or 2,2,4-trimethylpentane

    4-6 There are four isomeric four-carbon alkyl groups. Draw them, give their systematic names and label the degree of substitution (primary, secondary, or tertiary) of the head carbon atom which is bonded to the main chain.

    4-7 Draw Newman projection of the most stable conformation of the following compounds as viewed from the indicated bond.

    (a) 3-methylhexane viewed at C3-C4 bond

    (b) 2,2-dimethylbutane viewed at C2-C3 bond

    4-8

    (a) Draw two chair conformations of trans-1,2-dimethylcyclohexane and label all position as (a) for axial or (e) for equatorial.

    (b) Determine the higher-energy and the lower-energy conformations

    (c) Calculate the energy difference in these two conformations

    4-9 Draw the two chair conformations of each compound and label the substituents as axial or equatorial. In each case, determine which conformation is more stable.

    (a) cis-1-ethyl-4-methylcyclohexane

    (b) trans-1-ethyl-4-methylcyclohexane

    (c) cis-1-bromo-3-methylcyclohexane

    (d) trans-1-bromo-3-methylcyclohexane

    (e) cis-1-methyl-2-isopropylcychlohexane

    (f) trans-1-methyl-2-isopropylchyclohexane

    4-10 Glucose with molecular formula C6H12O6 is by far the most abundant sugar in nature. Glucose can take form as an open chain or as can be closed into a ring form. Below are chair conformations of α and β D-glucose. Using what you know about the conformational energy of substituted cyclohexane, predict which of the two isomers predominates in equilibrium. Explain your reasoning.

    OUlwJAAnh9oO3Mngrl4svp5firMSHq6h0fq5m4KKk5STPf7GFzf6FVgY2f_85NiRxFe5_GglRJjYMCPc1l0ET5mKha27fzxJ65vziRsmwLYfZ3gagjxlh8lgnH__XfjbNlT_KQK66u44Vdw1sQ

    4-11 Provide a line drawing corresponding to each of the following Newman projections and name them using IUPAC rules.

    (a) 0q3-DbOAd1nbKa_LOU7grJi2afXagsWCTgxSnWldGhMzsMIxaJLfj8dYDlkqkO6BgFHhDQ3Gvk_Q4EPP9ttZ2OtFpYi5AdS_YepfP0S7hbucJXIInkpe_3LvIK_8v1GIC0A-IClgiKpzlu8-hA

    TFjnJZuwKv6eUf368OtgDpVvC4EjzsUMcIp9yRAqotLydqSw6hc5C7a2MKLj65D5L_Nf7Q7NvlsxevtH1WbfAcN3K8fkxp3rYKpsok6MNpFuN5T0gaIG5fJxGu1ueADI45g25XzKsxHDurVoSQ

    (b)

    (c)UMrPqqIr_GAtarYArSroqHBkCTbnXmJj5sUoFzP6DRzo1BRA8W8e6vJ7p2X4_68rjZehxW6UyL04fRDHVnLSAFGONB8KibZlYuN1Z_J8Jcvome_Sdp5q0PiAKyNk1Spatnf7EONEB4UJ-2zZPg

    (d) kBlILNICjI37J0RnYkd7kAKPe2Vm4A8736wNrqRhbuOFFzpkgiVScNO2BS593CkQpWVxwefHfLqhiFSL32hPZXjGGKKkIxflofok9nTFQD5mRQghPE_heHxuBnsLn-n7J2EZA-gYOQm9nVRsHw

    (e) ItfEacoAZTu0tlv-B2uEKebW0f388EU15sQ5UhJPhFHLTMOosiRN1jGRGsKQfNph79vksw0Wv81wrhgDH737a279ixgjuOou2m7Iuzt-fqucQJXZ3vQXwxKPDag-MJh13Yl5XAsen_rz3TdP7w

    (f)BzY6q_DeyyHLbmc5V3s99tym5JJ5uKova0LtgFJo9RrqE6IbgB9j43hNzOeDw2RkwXvBVNtgKB46SyO6G_MGlK_p0rIL0w9dKXuBnxIQFuxtBmd8y_rMfc3VxOYoqhepCNv4otSfYxn5OXOQJQ

    (g) RyxdFaS8LmZCqlX-eG_O7fSJNi9AIt8v9eQZ_LGGU9mtgOB6P56moOqZlo9OCOGbBHIPq1anqnVvkry7ZW8pjwmJx6U5Ph-tTehztiTxjdmZ1tzieo106M8_I5uoF-kjb5X-OrMoKqPkSolg1Q

    (h) XO3LsDJVEuznELvZUiz6VYRyf6l1ZfE7_xkFj0ob5oGT2NMOeZbOWmjLz4G5TfNvHf3QewNJmRVub1DgZl8Jsq2QlzFUzM9WtztD4IvxnbIhNi2EpMP70NtnwTmbFthFQNPfSNQ0lKRsOcqmPA

    (i)mw8fAmN6FeVHVhg7XIrVZtsdFGojyx7xy1iLxorBQIEjDkRX4sX2Kcj8bWyT-8E5y3EKRJx-pqp5ldTweY1I7LTbeJt28HWbXXrOAehArUNQ3A23Uqdn1_egGltCmoIaKQsm3xQ-0UT0eBsnMA

    (j)atzzsGCvVBBBkQ3G1RgfA8_8FwcdPC_KKyyVZyJReaxpTQczYHBp27jHNrhTREO0riqaZaGVIvMYUPQ8jCkR6dpdIx5hcB3NSngQnOSnlH_N6B839ZCcHD98WyXdK01YaQnbzTYIuaNQpENjHQ

    4-12 Draw Newman projections along the C3-C4 bond to show the most stable and the least stable conformation of 2,3,5-trimethylhexane.

    4-13 In β-D-glucose, the hydroxyl group in C1 position is cis to the CH2OH group in C5 position, as shown in the figure below.

    There are two chair conformations of β-D-glucose. Draw them and identify which conformation is more stable.

    KYUrPN-9kuliEXSOpTnH34By3wwyhYkA_Cn8u3R5o5sxdtSSVjQK-ld_isVhi8Ul67KmJFF49B8C2MWnxlUaGxnal79d6hnPHytbVM47ftIorpittMX2suq5PLp-5oRs-IAg8N4KSsjGEl0sqA


    3.14: Additional Exercises is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?