Skip to main content
Chemistry LibreTexts

12: Nuclear Chemistry

  • Page ID
    393949
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    In today’s society, the term radioactivity conjures up a variety of images:

    • Nuclear power plants producing hydrocarbon-free energy, but with potentially deadly by-products that are difficult to store safely.
    • Bombs with the capacity to use nuclear reactions that produce devastating explosions with horrible side effects on the earth as we know it, and on the surviving populations that inhabit it.
    • Medical technology that utilizes nuclear chemistry to peer inside living things to detect disease, and the power to irradiate tissues to potentially cure these diseases.
    • Fusion reactors that hold the promise of limitless energy with few toxic side products.

    Radioactivity has a colorful history and clearly presents a variety of social and scientific dilemmas. In this chapter we will introduce the basic concepts of radioactivity, nuclear equations, and the processes involved in nuclear fission and nuclear fusion.

    • 12.1: The Discovery of Radioactivity
      Henri Becquerel, Marie Curie, and Pierre Curie shared the discovery of radioactivity.
    • 12.2: Types of Radioactivity- Alpha, Beta, and Gamma Decay
      The major types of radioactivity include alpha particles, beta particles, and gamma rays. Fission is a type of radioactivity in which large nuclei spontaneously break apart into smaller nuclei.
    • 12.3: Natural Radioactivity and Half-Life
      During natural radioactive decay, not all atoms of an element are instantaneously changed to atoms of another element. The decay process takes time and there is value in being able to express the rate at which a process occurs. A useful concept is half-life, which is the time required for half of the starting material to change or decay. Half-lives can be calculated from measurements on the change in mass of a nuclide and the time it takes to occur.
    • 12.4: The Discovery of Fission and the Atomic Bomb
      Nuclei that are larger than iron-56 may undergo nuclear reactions in which they break up into two or more smaller nuclei. These reactions are called fission reactions. When a neutron strikes a UU -235 nucleus and the nucleus captures a neutron, it undergoes fission, producing two lighter nuclei and three free neutrons. The production of the free neutrons makes it possible to have a self-sustaining fission process—a nuclear chain reaction.
    • 12.5: Nuclear Power
      Fusion is a method for obtaining energy from nuclear reactions that lies in the fusing together of two light nuclei to form a heavier nucleus.
    • 12.6: Biological Effect and Application of Radiation
      We are constantly exposed to radiation from naturally occurring and human-produced sources. This radiation can affect living organisms. Ionizing radiation is the most harmful type of radiation because it can ionize molecules or break chemical bonds, which damages the molecules and causes malfunctions in cell processes. Types of radiation differ in their ability to penetrate material and damage tissue.

    Contributions & Attributions

    • Wikibooks

    12: Nuclear Chemistry is shared under a CK-12 license and was authored, remixed, and/or curated by Marisa Alviar-Agnew & Henry Agnew.

    CK-12 Foundation
    LICENSED UNDER
    CK-12 Foundation is licensed under CK-12 Curriculum Materials License