Skip to main content
Chemistry LibreTexts

LMC Experiment_605_Hydrates

  • Page ID
    305616
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Student Name 

     

    Laboratory Date: 

    Date Report Submitted: 

    ___________________________ 

     

    Student ID 

     

    Experiment Number and Title 

    Experiment 605:  Hydrates 

     

     

     

    Experiment 605:  Hydrates 

     

    Section 1:  Purpose and Summary 

     

    • Determine the percent water of hydration in a hydrate sample. 

    • Determine the number of moles of water, x, per mole of anhydrous salt and write the chemical formula of the hydrate sample. 

     

    Hydrates are ionic compounds that contain water molecules as part of their crystal structure. The bound water is called the water of hydration. Some compounds lose this water of hydration spontaneously (efflorescent) while some may require heating. On the other hand, an anhydrous salt (without water) can absorb water from the atmosphere and spontaneously dissolve in its own water of hydration (deliquescent). 

     

    A hydrate contains a definite number of water molecules bound to each ionic compound or anhydrous salt. In this experiment, students will dehydrate an unknown hydrate sample by heating, and calculate the amount of water lost in the process. Students will determine the ratio between the moles of water lost and the moles of anhydrous salt and write the chemical formula of the hydrate sample. 

     

    Section 2:  Safety Precautions and Waste Disposal 

     

    Safety Precautions: 

     

    Use of eye protection is recommended for all experimental procedures.   

     

    A hot crucible will break if placed directly on a cold surface.  Set hot crucibles on to wire screens to cool. 

     

    Waste Disposal: 

     

    When you are finished with the experiment, discard solid waste in the container marked ‘solid waste’ in the fume hood. 

     

    Section 3: Procedure 

     

    Part 1:  Deliquescence and Efflorescence  

     

    Prepare two clean and dry watch glasses. Transfer a few crystals of sodium sulfate decahydrate, Na2SO4×10H2O, into one watch glass, and anhydrous calcium chloride, CaCl2, into the other. Observe each sample occasionally as you perform the rest of this experiment. Record your observations below. 

    Na2SO4×10H2O 

     

     

    CaCl2 

     

    Part 2 Formula of an unknown hydrate 

     

    Possible unknowns: CaCl2×xH2O, CaSO4×xH2O, AlK(SO4)2×xH2O, MgSO4×xH2

     

    1.  Obtain an unknown hydrate from your instructor. Record identification code for your unknown.  

    Identification code for unknown: 

     

    1.  Assemble a wire triangle supported on an iron ring attached to a ring stand. Put a clean, dry porcelain crucible and lid on the wire triangle and heat over a Bunsen burner flame for about three (3) minutes to ensure complete dryness. An example setup is shown: 

     

    \\lmcpitpfs1.lmc.local\homedirs\pwest644\Documents\A_ZeroCostTextbooks\Chem_6_Rewrite_2018\In Process Experiments\2.jpg 

     

    Allow the crucible to cool on the wire triangle. When the crucible is cool and safe to touch, weigh on an analytical balance. Record exact mass of the crucible and lid. 

    Mass of crucible and lid: 

     

    1. ________________ grams 

    1.  Transfer 2 – 4 grams of your unknown sample into the crucible and weigh again. Record exact mass.  

     

    NOTE:  You need to have both the total mass of the crucible, lid and sample as well as just the sample.  You can determine the mass of the sample by subtraction of the mass of the crucible (a). 

    Mass of crucible, lid and sample (before heating): 

     

    1. ________________ grams 

     

    1.  Put the crucible and sample back on the wire triangle. Position the crucible such that it is at a slight angle on the triangle. Place the crucible lid so that the lid is slightly ajar. Gently heat the crucible for 5 minutes over a Bunsen burner flame (slowly move the burner back and forth across the bottom of the crucible).  

     

    1.  After gentle heating for about 5 minutes, increase the heat applied to the crucible, lid, and sample until the bottom of the crucible turns red. Continue providing high heat for additional 10 minutes. Let the crucible cool for 5 to 10 minutes. Using crucible tongs, place the lid and the crucible on a wire gauze on the bench to finish cooling to room temperature.   

     

    1.  When the crucible is cool and safe to touch, weigh on an analytical balance. Record exact mass. Be sure to include the lid with the crucible on the balance. 

    Mass of crucible, lid and sample (after final heating): 

     

    1. ________________ grams 

     

    1.  To ensure complete dehydration of sample, reheat the crucible, lid, and sample as in step #5, except to heat it for 5 minutes. Cool, and weigh again. Record exact mass. (Repeat this process, if necessary, until the mass of the sample is within 0.01 g of the previously recorded mass.

    Mass of crucible, lid and sample 

    (after 2nd, etc. final heating): 

     

    1. ________________ grams 

     

     

    Part 3:  Reversibility of hydration 

     

    1.  Transfer a small amount of solid copper (II) sulfate pentahydrate, CuSO4×5H2O, that just fills the bottom of a clean, dry 150-mm (medium size) test tube. 

    1.  Using a test tube holder, grasp the test tube containing the hydrate and heat over a Bunsen burner flame while holding the test tube at a 45o angle.  

    1.  While heating, closely observe the solid and the inside wall of the test tube. Record your observations. 

    1.  When the solid residue seems to be completely dehydrated, allow the test tube to cool completely. Then, add a few drops of laboratory water to the solid in the test tube. What changes did you see? Record your observations. 

     

     

    Appearance of CuSO4.5H2O: 

     

     

    Appearance of solid after heating:  

     

     

     

    Appearance of the inside wall of the test tube after heating: 

     

     

     

    Appearance of solid residue after adding a few drops of laboratory water: 

     

     

     

     

     

     

     

    Section 4: Calculations 

     

    1.  From the masses you recorded in Part 2 of this experiment, calculate the mass of the unknown hydrate sample.  

    (b) – (a)  

    Mass of the unknown hydrate sample: 

     

    1. _______________ grams 

     

    1.  Calculate the mass of the heated (dehydrated) sample. This is also called the anhydrous salt

    (d) – (a) 

    Mass of the heated sample (dehydrated): 

     

    1. _______________ grams 

     

    1.  From the mass of the hydrate and the mass of the heated sample, calculate the mass of water lost. 

    (e) – (f)  

    Mass of water lost: 

     

    1. _______________ grams 

     

    1.  Calculate percent water in the hydrate. 

     

     

    % water \(=\frac{\text { mass of water lost }(g)}{\text { mass of hydrate }(e)}\) x 100

     

     

    Percent water in the hydrate: 

    1.  Ask for the identity of the unknown hydrate sample from your instructor. Refer to a periodic table to obtain the molar mass of the anhydrous salt. Then, using this information and the mass of the heated sample, calculate the number of moles of the anhydrous salt. 

     

    Identify of the anhydrous salt: ________________________ 

     

    Molar mass of anhydrous salt: ___________________g/mol  

     

    Show your equation here: 

     

     

     

    Moles of anhydrous salt:  

     

    1. _______________ mol 

     

    1.  Similarly, determine the molar mass of water. Then, calculate the number of moles of water lost from the sample. 

     

    Molar mass of water, H2O: ___________________g/mol 

     

    Show your equation here:  

     

     

     

    Moles of water lost: 

     

    1. _______________ mol 

    1.  Calculate the ratio of moles of water lost to moles of anhydrous salt. 

     

    (i¸ (h) 

     

     

    mole of H2Omole of anhydrous salt ratiomole of H2Omole of anhydrous salt ratio

     

     

    1. ____ : ____ 

    1.  The ratio calculated (j) is expressed in the formula of the compound (hydrate). Write the chemical formula of the hydrated form of your unknown sample. 

     

    For example, if a given amount of hydrated copper(II) sulfate gave off 0.060 mole of H2O and left behind 0.012 mole of anhydrous copper(II) sulfate, CuSO4, then the ratio of H2O to CuSO4 is 5:1, and the formula would be written as CuSO4×5H2O. 

    Chemical formula of the unknown sample: 

     

     

    Post-lab Questions 

     

    1. Calculate the mass percent of water for the hydrate, LiNO3×3H2O. 

     

     

     

     

     

     

     

     

     

     

    1. What will be the probable effect if you kept the crucible completely covered during the entire heating and cooling processes? Would your calculated percent water in the hydrate be high, low, or unaffected? Explain. 

     

     

     

     

     

     

     

     

     

     

    If 2.752 g sample of Ca(NO3)2×xH2O is heated to constant mass, the residue weighs 1.941 g. Determine the value of x and the formula of the hydrate. 

     

     

     

     

     

     

     

     

     

     

     

     

    Notes: 


    LMC Experiment_605_Hydrates is shared under a CC BY license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?