Skip to main content
Chemistry LibreTexts

Experiment_606_Double Displacement Reactions_1_2_3

  • Page ID
    303068
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Student Name 

     

    Laboratory Date: 

    Date Report Submitted: 

    ___________________________ 

     

    Student ID 

     

    Experiment Number and Title 

    Experiment 606:  Double Displacement Reactions  

     

     

     

    Experiment 606:  Double Displacement Reactions 

     

    Section 1:  Purpose and Summary 

     

    • Carry out double displacement reactions involving different aqueous solutions. 

    • Identify reactions that form precipitates, evolve gases, and increase temperature after mixing. 

    • Predict whether a double displacement reaction will occur between two solutions. 

    • Write molecular, complete ionic, and net ionic equations. 

     

    In this experiment, students will combine two aqueous solutions and determine whether a reaction occurs. Based on solubility rules, students will predict whether a double displacement reaction will occur from a given set of aqueous solutions.  The students will then carry out the reaction to confirm their prediction. 

     

    Section 2:  Safety Precautions and Waste Disposal 

     

    Safety Precautions: 

     

    Use of eye protection is recommended for all experimental procedures.  

     

    Waste Disposal: 

     

    While you are doing the experiment, collect your reaction mixtures into a waste beaker. 

     

    When you are finished with the experiment, pour the contents of the waste beaker (liquid waste only) into the inorganic waste container in the fume hood.  Rinse water from the beaker does not need to be captured, just the bulk material.   

     

    Section 3: Procedure 

     

    Each reaction in this experiment involves mixing two aqueous solutions in a test tube. Clean, rinse with laboratory water, and dry fourteen (14) test tubes. Label each test tube with the reaction mixture. Set on a test tube rack.  

     

    To determine whether a reaction occurs or not, observe any bubble formation (gas evolution) in the solution, formation of a solid (precipitate), or increase in temperature of the reaction mixture. Bubble formation is due to the formation of a gaseous product. If the solution becomes cloudy, this is evidence for the formation of fine, suspended solid particles of the precipitate. 

     

    Part 1:  Observing double displacement reactions 

     

    Obtain about 1 mL (approximately 20 drops) each of the indicated solutions in a test tube. Record your observations. Write the molecular, complete ionic, and net ionic equations for the reaction. If no observable change is noted, write ‘no reaction’ on the reactant side of the equation; no need to write the complete ionic and net ionic equations.  

     

    Do one reaction at a time to avoid mixing up of solutions. It is important not to mix up droppers (if used) to avoid contamination of reagents. This may also lead to ‘false positive’ observations.  

     

    NOTE:  All solutions are at a concentration of 0.1 Molar (moles per liter) unless otherwise indicated*.   

     

    1. Sodium chloride (aq) + potassium nitrate (aq) 

     

    Observations: 

     

     

    Molecular equation: 

     

     

    Complete ionic equation: 

     

     

    Net ionic equation: 

     

     

    1. Sodium chloride (aq) + silver nitrate (aq) 

     

    Observations: 

     

     

    Molecular equation: 

     

     

    Complete ionic equation: 

     

     

    Net ionic equation: 

     

     

     

    1. Sodium carbonate (aq) + hydrochloric acid (aq) 

     

    Observations: 

     

     

    Molecular equation: 

     

     

    Complete ionic equation: 

     

     

    Net ionic equation: 

     

     

    1. Sodium hydroxide (aq) + hydrochloric acid (aq) 

    NOTE:  Add one drop of phenolphthalein indicator separately to the sodium hydroxide and hydrochloric acid before mixing.  Mix in a specific sequence. 

     

    4.1. Transfer ½ of the sodium hydroxide to the hydrochloric acid.  (Excess hydrochloric acid) 

    4.2. Transfer the rest of the sodium hydroxide to the hydrochloric acid.  (Equal amounts) 

    4.3. Add an additional 1-2 mL of sodium hydroxide to the hydrochloric acid.  (Excess sodium hydroxide) 

     

    Observations: 

     

     

    Molecular equation: 

     

     

    Complete ionic equation: 

     

     

    Net ionic equation: 

     

     

    1. Barium chloride (aq) + sodium sulfate (aq) 

     

    Observations: 

     

     

    Molecular equation: 

     

     

    Complete ionic equation: 

     

     

    Net ionic equation: 

     

     

     

    1. Lead (II) nitrate (aq) + potassium iodide (aq) 

     

    Observations: 

     

     

    Molecular equation: 

     

     

    Complete ionic equation: 

     

     

    Net ionic equation: 

     

     

    1. Calcium chloride (aq) + sodium carbonate (aq) 

     

    Observations: 

     

     

    Molecular equation: 

     

     

    Complete ionic equation: 

     

     

    Net ionic equation: 

     

     

    1. *Saturated sodium chloride (aq) + lead (II) nitrate (aq) 

     

    Observations: 

     

     

    Molecular equation: 

     

     

    Complete ionic equation: 

     

     

    Net ionic equation: 

     

     

     

    1. Potassium sulfate (aq) + ammonium chloride (aq) 

     

    Observations: 

     

     

    Molecular equation: 

     

     

    Complete ionic equation: 

     

     

    Net ionic equation: 

     

     

    1. Sodium hydroxide (aq) + nitric acid (aq) 

    NOTE:  Add one drop of phenolphthalein indicator separately to the sodium hydroxide and nitric acid before mixing.  Mix in a specific sequence. 

     

    10.1. Transfer ½ of the sodium hydroxide to the nitric acid.  (Excess nitric acid) 

    10.2. Transfer the rest of the sodium hydroxide to the nitric acid.  (Equal amounts) 

    10.3. Add an additional 1-2 ml of sodium hydroxide to the nitric acid.  (Excess sodium hydroxide) 

     

    Observations: 

     

     

    Molecular equation: 

     

     

    Complete ionic equation: 

     

     

    Net ionic equation: 

     

     

    1. Iron(III) chloride (aq) + *1 M sodium hydroxide (aq) 

     

    Observations: 

     

     

    Molecular equation: 

     

     

    Complete ionic equation: 

     

     

    Net ionic equation: 

     

     

    1. Zinc nitrate (aq) + *1 M sodium hydroxide (aq) 

     

    Observations: 

     

     

    Molecular equation: 

     

     

    Complete ionic equation: 

     

     

    Net ionic equation: 

     

     

     

     

    Part 2 Predicting double displacement reactions 

     

    SOLUBILITY RULES for IONIC COMPOUNDS 

     

    1. Group 1 metal compounds (also called alkali metal compounds), acetates, nitrates, and ammonium compounds are all soluble. 

     

    2. Hydroxides of alkali metals and NH4+1, Ca+2, Sr+2, and Ba+2 are soluble. All others are insoluble. 

     

    3. All halides (chlorides etc.) are soluble except for those containing Ag+1, Pb+2, and Hg2+2

     

    4. Most sulfates are soluble, except for BaSO4, SrSO4, Ag2SO4, PbSO4, and CaSO4

     

    5. Most phosphates, carbonates, chromates and sulfides are insoluble (except those of the Group 1 

       metals and ammonium ion). 

     

    6. In addition, all acids (compounds that form an ionized H+, HCl, H2SO4, HI, etc.) are soluble! 

     

     

    You have the following solutions available in the lab: NH4Cl, NaOH, HCl, and CuSO4

     

    1.  Predict which pair of compounds will produce a precipitate.  Use the solubility rules listed above.   

     

     

    1.  Test your prediction by combining about 1 mL each of the two solutions in a clean and dry test tube. Record the results of your test below and write the net ionic equation for the reaction. 

     

     

    3.   Compounds tested: 

     

     

     

    Observations: 

     

     

     

    Net ionic equation: 

     

     

     

    1.  Predict which pair of compounds will produce a gaseous product (e.g. CO2, NH3). Before you test your prediction, wet a piece of red litmus paper and attach it to the bottom of a watch glass. 

     

    1.  Test your prediction by combining about 1 mL each of the two solutions in a clean and dry test tube. Immediately cover the test tube with the watch glass with the red litmus paper. The red litmus paper will turn blue as evidence for the formation of gaseous ammonia in your reaction. Record the results of your test below and write the net ionic equation for the reaction. 

     

    Compounds tested: 

     

     

     

    Observations: 

     

     

     

    Net ionic equation: 

     

     

     

     

     

    Notes: 


    Experiment_606_Double Displacement Reactions_1_2_3 is shared under a CC BY license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?