Skip to main content
Chemistry LibreTexts

7.1: Balancing Redox Reactions

  • Page ID
    326226
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Balancing Redox Reactions

    In studying redox chemistry, it is important to remember balancing electrochemical reactions. Simple redox reactions (for example, H2 + I2 → 2 HI) can be balanced by inspection, but for more complex reactions it is helpful to have a systematic method. There are many different methods for doing this. The focus in this section will be on the ion-electron method allows one to balance redox reactions regardless of their complexity and allows for identification of the species changing valence states in the reaction. We illustrate this method with two examples. For a review of how to determine oxidation states see Oxidation States (Oxidation Numbers).

    Steps to balance a redox reaction

    1. Identify what is being oxidized and reduced and divide the reaction into two half reactions
    2. For each half reaction, balance all the atoms EXCEPT oxygen and hydrogen.
    3. For each half reaction, balance oxygen by adding H2O
    4. For each half reaction, balance hydrogen by adding H+
    5. For each half reaction, balance charge by adding electrons
    6. Add the two half reaction together. If needed, multiply half reactions by coefficients so that there are an equal number of electrons in both half reactions
    7. If the reaction is in BASIC solution, cancel any H+ by adding OH- to both sides or the reaction

    Example \(\PageIndex{1}\)

    Determine the balanced redox reaction that occurs when I- reacts with MnO4- to form IO3- and Mn2+ in basic solution.

    Solution

    Following the steps above:

    Step 1. The I- is oxidized and the MnO4- is reduced so the two half reactions are:

    MnO4- → Mn2+

    I- → IO3-

    Step 2. The Mn and I are already balanced in the half reactions.

    Step 3. Add H2O to balance the O in each half reaction:

    MnO4- → Mn2+ + 4 H2O

    3 H2O + I- → IO3-

    Step 4. Add H+ to balance H in each half reaction:

    8 H+ + MnO4- → Mn2+ + 4 H2O

    3 H2O + I- → IO3- + 6 H+

    Step 5. Add e- to balance the charge in each half reaction:

    8 H+ + MnO4- + 5 e- → Mn2+ + 4 H2O

    3 H2O + I- → IO3- + 6 H+ + 6 e-

    Notice the electrons are on opposite sides in the two half reactions

    Step 6. Multiply the half reactions by coefficients and add together. All the electrons should cancel in the final reaction:

    Multiplying the top by 6 and bottom by 5 will give 30 electrons in each reaction

    6(8 H+ + MnO4- + 5 e- → Mn2+ + 4 H2O)

    5(3 H2O + I- → IO3- + 6 H+ + 6 e-)

    Add and cancel common species

    48 H+ + 6 MnO4- + 15 H2O + 5 I- + 30 e- → 6 Mn2+ + 5 IO3- + 30 H+ + 30 e- + 24 H2O

    18 H+ + 6 MnO4- + 5 I- → 6 Mn2+ + 5 IO3- + 9 H2O

    Step 7. The reaction is in basic solution so add OH- to each side:

    18 OH- + 18 H+ + 6 MnO4- + 5 I- → 6 Mn2+ + 5 IO3- + 9 H2O + 18 OH-

    OH- + H+ → H2O

    9 H2O + 6 MnO4- + 5 I- → 6 Mn2+ + 5 IO3- + 18 OH-

    Example \(\PageIndex{2}\)

    Balance the redox reaction that occurs when S2O32- reacts with H2O2 to form S4O62- and water in acidic solution.

    Solution

    Following the steps above:

    Step 1. The S2O32- is oxidized and the H2O2 is reduced so the two half reactions are:

    S2O32- → S4O62-

    H2O2 → H2O

    Step 2. Balance the S.

    2 S2O32- → S4O62-

    H2O2 → H2O

    Step 3. Add H2O to balance the O in each half reaction:

    2 S2O32- → S4O62-

    H2O22 H2O

    Step 4. Add H+ to balance H in each half reaction:

    2 S2O32- → S4O62-

    2H+ + H2O2 → 2 H2O

    Step 5. Add e- to balance the charge in each half reaction:

    2 S2O32- → S4O62- + 2 e-

    2H+ + 2 e- + H2O2 → 2 H2O

    Notice the electrons are on opposite sides in the two half reactions

    Step 6. The number of electrons is already the same on both sides. Add and cancel common species:

    2 S2O32- + 2H+ + 2 e- + H2O2 → S4O62- + 2 e- + 2 H2O

    2 S2O32- + 2H+ + H2O2 → S4O62- + 2 H2O

    Note that we did not need to know the oxidation states of S or O in the reactants and products in order to balance the reaction. In this case, assigning the valence states is a bit complex, because S4O62- contains sulfur in more than one oxidation state.


    7.1: Balancing Redox Reactions is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.