Solutions 4
- Page ID
- 204078
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Q1
- T
- T
- F, the overlap integral is zero. \(\beta\) pertains to energy, not overlap.
- T
- F, \(\beta\) is experimentally found to be negative.
- F, the resonance integral pertains to energy, so it is \(\beta\) .
- F, non-adjacent resonance integrals are zero.
- T
Q2
In the ethylene system, there are two p orbitals to consider, \( |1\rangle\) and \(|p\rangle\), each with energy E.
The Hamiltonian, \(\hat{H}\), is given by:
\( \begin{bmatrix}
\alpha& \beta\\
\beta& \alpha\end{bmatrix} \)
We know that \(\hat{H} |\psi\rangle = E|\psi\rangle\) . Factoring, we have \( \hat{H} -EI|\psi\rangle = | 0 \rangle\), where I is the identity matrix.
This implies that \( |\psi\rangle = (\hat{H} -EI)^{-1} |0\rangle\). For the left side to be non-zero, the inverse matrix that acts on the zero vector must be infinite. From linear algebra, the inverse of a matrix is inversely proportionate to its determinant:
\((\hat{H} -EI)^{-1} = \frac{C}{det(\hat{H} -EI)}\). For the inverse to be infinite, we require \(det(\hat{H} -EI) = 0\).
Q3
a). \( \hat{H}\) for a 5 carbon system by the Huckel Theory, is given by:
\[\begin{bmatrix}\alpha&\beta&0&0&0\\\beta&\alpha&\beta&0&0\\0&\beta&\alpha&\beta&0\\0&0&\beta&\alpha&0\\0&0&0&\beta&\alpha\end{bmatrix} \]
b). Given the following wavefunctions, choose two and show they are normalized:
- \( | \pi_1 \rangle = +0.45 | 1 \rangle +0.45 | 2 \rangle + +0.45 | 3 \rangle +0.45 | 4 \rangle +0.45 |5 \rangle \)
- \( | \pi_2 \rangle = -0.51 | 1 \rangle + 0.63 | 2 \rangle -0.51 | 3 \rangle + 0.20 | 4 \rangle + 0.20 | 5 \rangle \)
- \( | \pi_3 \rangle = -0.37 | 1 \rangle + 0.37 | 3 \rangle + 0.60 | 4 \rangle + 0.60 | 5 \rangle \)
- \( | \pi_4 \rangle = -0.21 | 1 \rangle - 0.63 | 2 \rangle -0.20 | 3 \rangle + 0.51 | 4 \rangle + 0.51 | 5 \rangle \)
- \( | \pi_5 \rangle = +60 | 1 \rangle -0.60 | 3 \rangle + 0.37 | 4 \rangle + 0.37 | 5 \rangle \)
The dot products to show normalization are:
- \(\langle1|1\rangle\) is: 1.012500e+00
- \(\langle2|2\rangle\) is: 9.971000e-01
- \(\langle3|3\rangle\) is: 9.938000e-01
- \(\langle4|4\rangle\) is: 1.001200e+00
- \(\langle5|5\rangle\) is: 9.938000e-01
c). Show that two are orthogonal to each other:
Actually calculating the dot products we see they are not perfectly orthogonal, some with great intersection.
- \(\langle1|2\rangle\) is: 4.635000e-01
- \(\langle1|3\rangle\) is: 5.400000e-01
- \(\langle1|4\rangle\) is: 1.710000e-01
- \(\langle1|5\rangle\) is: 3.330000e-01
- \(\langle2|3\rangle\) is: 6.174000e-01
- \(\langle2|4\rangle\) is: 1.620000e-02
- \(\langle2|5\rangle\) is: -4.640000e-01
- \(\langle3|4\rangle\)is: 7.637000e-01
- \(\langle3|5\rangle\) is: 0
- \(\langle4|5\rangle\) is: 1.314000e-01
d). Use the Hamiltonian matrix to calculate the distinct energies using these eigenfunctions.
We can find the energies of this system by setting \(\hat{H} - EI = 0\).
\[\begin{vmatrix}\alpha-E&\beta&0&0&0\\\beta&\alpha-E&\beta&0&0\\0&\beta&\alpha-E&\beta&0\\0&0&\beta&\alpha-E&0\\0&0&0&\beta&\alpha-E\end{vmatrix} = 0\]
Dividing the matrix by \(\beta\) and using the variable \( x = \frac{\alpha - E}{\beta}\), we can solve a determinant of the form:
\[\begin{vmatrix}x&1&0&0&0\\1&x&1&0&0\\0&1&x&1&0\\0&0&1&x&0\\0&0&0&1&x\end{vmatrix} = 0\]
Continuing to solve for x by breaking down the determinant into smaller determinants, (also known as its "minors" or Laplace's formula) you will arrive after careful factoring (see https://people.richland.edu/james/le...terminant.html):
\[ x(x^2-3)(x^2-1) = 0\]
The energies relate to the other variables via: \(E = \alpha - x\beta\)
The roots are \(x = 0, \pm 1, \pm \sqrt{3}\), so the energies are \( \alpha, \alpha \pm \sqrt{3}\beta, \alpha \pm \beta\)
Q4
The allyl cation can be described by the Hamtilonian:
\[ \hat{H} = \begin{bmatrix}\alpha&\beta&0\\\beta&\alpha&\beta\\0&\beta&\alpha\end{bmatrix}\]
Similar to the previous problem, we must again solve for \(det(\hat{H}-EI) = 0 \), which results in:
\[\begin{vmatrix}x&1&0\\1&x&1\\0&1&x\end{vmatrix}= x(x^2-2)= 0\]
The roots are \(x = 0,\pm\sqrt{2}\), which correspond to energies: \(\alpha + \sqrt{2}\beta, \alpha, \alpha - \sqrt{2}\beta\) which correspond to bonding, non-bonding and anti-bonding orbitals. The deolocalization of the electrons lowers the energy of the system to 0.82 \(\beta\) when compared to ethylene.