Skip to main content
Chemistry LibreTexts

Solutions 1

  • Page ID
    204072
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Q1

    Write out the complete time-independent Hamiltonians for (each term is explicitly given):

    1. the helium atom, electrons 1,2: \[ -\dfrac{\hbar^2}{2m_e}(\nabla^2_1 + \nabla^2_2) - \dfrac{Ze^2}{4\pi\epsilon}(\dfrac{1}{r_1}+\dfrac{1}{r_2}) + \dfrac{e^2}{4\pi\epsilon r_{12}}\]
    2. the \(H_2^+\) ion, nuclei A,B: \[ -\dfrac{\hbar^2}{2m_p}(\nabla^2_A + \nabla^2_B) - \dfrac{Ze^2}{4\pi\epsilon}(\dfrac{1}{r_A}+\dfrac{1}{r_B}) + \dfrac{e^2}{4\pi\epsilon r_{AB}}\]
    3. the \(H_2\) molecule, nuclei A,B electrons 1,2: \[ -\dfrac{\hbar^2}{2m_p}(\nabla^2_A + \nabla^2_B) -\dfrac{\hbar^2}{2m_e}(\nabla^2_1 + \nabla^2_2) - \dfrac{e^2}{4\pi\epsilon} (\dfrac{1}{r_{1A}}+\dfrac{1}{r_{1B}} + \dfrac{1}{r_{2A}}+\dfrac{1}{r_{2B}} -\dfrac{1}{r_{AB}} - \dfrac{1}{r_{12} })\]

    Q2

    What is the Born-Oppenheimer approximation and what do we use it for? When would it fail?

    The Born-Oppenheimer approximation assumes that the nuclei in a system are stationary relative to the faster moving electrons. This allows separation of the wavefunction into a nuclear contribution and an independent electronic contribution. The approximation fails when nuclear motion is non-neglible (i.e., if the nuclei are moving faster than expected such as if very vibrational excited).

    Q3

    Confirm two s-p orbitals are orthonormal. The two \(|sp \rangle\) orbitals are:

    \[ | sp_1 \rangle = \dfrac{1}{\sqrt {2}}( |2s\rangle + |2p \rangle)\]

    \[ | sp_2 \rangle = \dfrac{1}{\sqrt {2}}( |2s\rangle - |2p \rangle)\]

    Orthonormal means fulfilling both orthogonality and normality.

    Normality means showing:

    \[ \langle sp_1 | sp_1 \rangle = \langle sp_2 | sp_2 \rangle = 1\]

    Orthogonality means showing:

    \[ \langle sp_1 | sp_2 \rangle = \langle sp_2 | sp_1 \rangle = 0\]

    We must keep in mind that s and p orbitals are orthonormal:

    \[ \langle s|s \rangle = \langle p|p \rangle = 1 \]

    and

    \[ \langle s|p \rangle = \langle p|s \rangle = 0 \]

    Therefore using the decomposition of the hybrid orbitals....

    \[ \langle sp_1 | sp_1 \rangle = \dfrac{1}{\sqrt {2}}( \langle2s| + \langle2p |) \dfrac{1}{\sqrt {2}}( |2s\rangle + |2p \rangle) = \dfrac{1}{2}( \langle s|s \rangle + \langle s|p \rangle + \langle p|s \rangle + \langle p|p \rangle ) = \dfrac{1}{2}( 1 + 0 + 0 + 1) = 1 \]

    \[ \langle sp_2 | sp_2 \rangle = \dfrac{1}{\sqrt {2}}( \langle2s| - \langle2p |) \dfrac{1}{\sqrt {2}}( |2s\rangle - |2p \rangle) = \dfrac{1}{2}( \langle s|s \rangle - \langle s|p \rangle - \langle p|s \rangle + \langle p|p \rangle ) = \dfrac{1}{2}( 1 - 0 - 0 + 1) = 1 \]

    \[ \langle sp_1 | sp_2 \rangle = \dfrac{1}{\sqrt {2}}( \langle2s| + \langle2p |) \dfrac{1}{\sqrt {2}}( |2s\rangle - |2p \rangle) = \dfrac{1}{2}( \langle s|s \rangle - \langle s|p \rangle - \langle p|s \rangle - \langle p|p \rangle ) = \dfrac{1}{2}( 1 - 0 + 0 - 1) = 0 \]

    \[ \langle sp_2 | sp_1 \rangle = \dfrac{1}{\sqrt {2}}( \langle2s| - \langle2p |) \dfrac{1}{\sqrt {2}}( |2s\rangle + |2p \rangle) = \dfrac{1}{2}( \langle s|s \rangle - \langle s|p \rangle - \langle p|s \rangle - \langle p|p \rangle ) = \dfrac{1}{2}( 1 + 0 - 0 - 1) = 0 \]

    Q4

    Show \(|sp^2\rangle = \dfrac{|s\rangle + \sqrt{2} |p \rangle}{\sqrt{3}}\) is normalized if \(|s \rangle\) and \(|p \rangle\) are normalized. This means showing that \( \langle sp^2|sp^2\rangle = 1 \):

    \[ \langle sp^2|sp^2\rangle = (\dfrac{\langle s | + \sqrt{2} \langle p |}{\sqrt{3}} )( \dfrac{|s\rangle + \sqrt{2} |p \rangle}{\sqrt{3}}) = \dfrac{1}{3}(\langle s | s \rangle + \sqrt{2} \langle s|p \rangle = \sqrt{2} \langle p | s \rangle + 2 \langle p|p \rangle) = \dfrac{1}{3}(1 + 0 + 0 + 2) = 1\]

    Q5

    What is the average energy of a Hydrogen atom \(|sp^2 \rangle\) hybrid orbital if energy of \( |s \rangle \) is \(E_s \) and energy of \(|p \rangle \) is \( E_p \)?

    We are given that \( \langle s| \hat{H} | s \rangle = E_s \) and \( \langle p| \hat{H} | p \rangle = E_p \).

    It is also useful to realize that

    \[ \langle s| \hat{H} | p \rangle = \langle p| \hat{H} | s \rangle = 0 \]

    \[ E = \dfrac{ \langle sp^2| \hat{H} | sp^2 \rangle}{ \langle sp^2|sp^2 \rangle} = \left(\dfrac{\langle s | + \sqrt{2} \langle p |}{\sqrt{3}} \right) \hat{H} \left( \dfrac{|s\rangle + \sqrt{2} |p \rangle}{\sqrt{3}} \right) \]

    \[= \dfrac{1}{3}( \langle s| \hat{H} | s \rangle + \sqrt{2}\langle s| \hat{H} | p \rangle + \sqrt{2}\langle p| \hat{H} | s \rangle + 2 \langle p| \hat{H} | p \rangle = \dfrac{1}{3}(E_s + 0 + 0 + 2 E_p) \]

    = \[ \dfrac{1}{3}E_s + \dfrac{2}{3}E_p \]

    Q6

    When one s orbital and two p orbitals are used to generate hybrid orbitals, a total of three orbitals are generated.


    Solutions 1 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?