Solutions 1
( \newcommand{\kernel}{\mathrm{null}\,}\)
Q1
Write out the complete time-independent Hamiltonians for (each term is explicitly given):
- the helium atom, electrons 1,2: −ℏ22me(∇21+∇22)−Ze24πϵ(1r1+1r2)+e24πϵr12
- the H+2 ion, nuclei A,B: −ℏ22mp(∇2A+∇2B)−Ze24πϵ(1rA+1rB)+e24πϵrAB
- the H2 molecule, nuclei A,B electrons 1,2: −ℏ22mp(∇2A+∇2B)−ℏ22me(∇21+∇22)−e24πϵ(1r1A+1r1B+1r2A+1r2B−1rAB−1r12)
Q2
What is the Born-Oppenheimer approximation and what do we use it for? When would it fail?
The Born-Oppenheimer approximation assumes that the nuclei in a system are stationary relative to the faster moving electrons. This allows separation of the wavefunction into a nuclear contribution and an independent electronic contribution. The approximation fails when nuclear motion is non-neglible (i.e., if the nuclei are moving faster than expected such as if very vibrational excited).
Q3
Confirm two s-p orbitals are orthonormal. The two |sp⟩ orbitals are:
|sp1⟩=1√2(|2s⟩+|2p⟩)
|sp2⟩=1√2(|2s⟩−|2p⟩)
Orthonormal means fulfilling both orthogonality and normality.
Normality means showing:
⟨sp1|sp1⟩=⟨sp2|sp2⟩=1
Orthogonality means showing:
⟨sp1|sp2⟩=⟨sp2|sp1⟩=0
We must keep in mind that s and p orbitals are orthonormal:
⟨s|s⟩=⟨p|p⟩=1
and
⟨s|p⟩=⟨p|s⟩=0
Therefore using the decomposition of the hybrid orbitals....
⟨sp1|sp1⟩=1√2(⟨2s|+⟨2p|)1√2(|2s⟩+|2p⟩)=12(⟨s|s⟩+⟨s|p⟩+⟨p|s⟩+⟨p|p⟩)=12(1+0+0+1)=1
⟨sp2|sp2⟩=1√2(⟨2s|−⟨2p|)1√2(|2s⟩−|2p⟩)=12(⟨s|s⟩−⟨s|p⟩−⟨p|s⟩+⟨p|p⟩)=12(1−0−0+1)=1
⟨sp1|sp2⟩=1√2(⟨2s|+⟨2p|)1√2(|2s⟩−|2p⟩)=12(⟨s|s⟩−⟨s|p⟩−⟨p|s⟩−⟨p|p⟩)=12(1−0+0−1)=0
⟨sp2|sp1⟩=1√2(⟨2s|−⟨2p|)1√2(|2s⟩+|2p⟩)=12(⟨s|s⟩−⟨s|p⟩−⟨p|s⟩−⟨p|p⟩)=12(1+0−0−1)=0
Q4
Show |sp2⟩=|s⟩+√2|p⟩√3 is normalized if |s⟩ and |p⟩ are normalized. This means showing that ⟨sp2|sp2⟩=1:
⟨sp2|sp2⟩=(⟨s|+√2⟨p|√3)(|s⟩+√2|p⟩√3)=13(⟨s|s⟩+√2⟨s|p⟩=√2⟨p|s⟩+2⟨p|p⟩)=13(1+0+0+2)=1
Q5
What is the average energy of a Hydrogen atom |sp2⟩ hybrid orbital if energy of |s⟩ is Es and energy of |p⟩ is Ep?
We are given that ⟨s|ˆH|s⟩=Es and ⟨p|ˆH|p⟩=Ep.
It is also useful to realize that
⟨s|ˆH|p⟩=⟨p|ˆH|s⟩=0
E=⟨sp2|ˆH|sp2⟩⟨sp2|sp2⟩=(⟨s|+√2⟨p|√3)ˆH(|s⟩+√2|p⟩√3)
=13(⟨s|ˆH|s⟩+√2⟨s|ˆH|p⟩+√2⟨p|ˆH|s⟩+2⟨p|ˆH|p⟩=13(Es+0+0+2Ep)
= 13Es+23Ep
Q6
When one s orbital and two p orbitals are used to generate hybrid orbitals, a total of three orbitals are generated.