Skip to main content
Chemistry LibreTexts

1.14.39: Kinetic Salt Effects

  • Page ID
    389715
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    The chemical potential of a given solute \(\mathrm{j}\) in an aqueous solution is related to the concentration \(\mathrm{c}_{\mathrm{j}}\) using equation (a) where \(\mathrm{c}_{\mathrm{r}}\) is a reference concentration, \(1 \mathrm{~mol dm}^{-3}\), and yj is the solute activity coefficient.

    \[\mu_{\mathrm{j}}(\mathrm{aq})=\mu_{\mathrm{j}}^{0}\left(\mathrm{c}_{\mathrm{j}}=1 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; \mathrm{aq} ; \mathrm{id}\right)+\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{c}_{\mathrm{j}} \, \mathrm{y}_{\mathrm{j}} / \mathrm{c}_{\mathrm{r}}\right) \nonumber \]

    By definition, at all \(\mathrm{T}\) and \(\mathrm{p}\),

    \[\operatorname{limit}\left(\mathrm{c}_{\mathrm{j}} \rightarrow 0\right) \mathrm{y}_{\mathrm{j}}=1.0 \nonumber \]

    In the application of equation (a) to the rates of chemical reactions in solution, transition state theory [1] is used. In the case of a second order bimolecular reaction involving solutes \(\mathrm{X}(\mathrm{aq})\) and \(\mathrm{Y}(\mathrm{aq})\), the reaction proceeds as described by equation (c).

    \[\mathrm{X}(\mathrm{aq})+\mathrm{Y}(\mathrm{aq}) \Leftarrow \Rightarrow \mathrm{TS}^{\neq} \rightarrow \text { products } \nonumber \]

    An equilibrium between reactants and transition state, \(\mathrm{TS}^{\neq}\) is described by an equilibrium constant \(\mathrm{K}^{\neq}\). Hence,

    \[\Delta^{\neq} \mathrm{G}^{0}=-\mathrm{R} \, \mathrm{T} \, \ln \left(\mathrm{K}^{\neq}\right)=\mu_{\neq}^{0}(\mathrm{aq})-\mu_{\mathrm{X}}^{0}(\mathrm{aq})-\mu_{\mathrm{Y}}^{0}(\mathrm{aq}) \nonumber \]

    At equilibrium,

    \[\mu^{\mathrm{eq}}(\mathrm{X} ; \mathrm{aq})+\mu^{\mathrm{eq}}(\mathrm{Y} ; \mathrm{aq})=\mu^{\mathrm{eq}}(\mathrm{TS} ; \mathrm{aq}) \nonumber \]

    Using equation (a),

    \[\mathrm{K}^{\neq}=\frac{\mathrm{c}^{\neq}(\mathrm{aq}) \, \mathrm{y}^{\neq}(\mathrm{aq}) \, \mathrm{c}_{\mathrm{r}}}{\mathrm{c}_{\mathrm{x}}^{\mathrm{eq}}(\mathrm{aq}) \, \mathrm{y}_{\mathrm{X}}(\mathrm{aq}) \, \mathrm{c}_{\mathrm{Y}}^{\mathrm{eq}}(\mathrm{aq}) \, \mathrm{y}_{\mathrm{Y}}(\mathrm{aq})} \nonumber \]

    According to \(\mathrm{TS}\) theory [1] rate constant \(\mathrm{k}\) is related to \(\mathrm{K}^{\neq}\) using equation (g) where \(\kappa\) is a transmission coefficient, customarily set to unity. Then,

    \[\mathrm{k}=\mathrm{K} \,(\mathrm{k} \, \mathrm{T} / \mathrm{h}) \, \mathrm{K}^{\neq} \, \mathrm{y}_{\mathrm{X}}(\mathrm{aq}) \, \mathrm{y}_{\mathrm{Y}}(\mathrm{aq}) / \mathrm{y}_{\neq}(\mathrm{aq}) \nonumber \]

    In the event that the thermodynamic properties of the aqueous solution are ideal, equation (g) simplifies to equation (h).

    \[\mathrm{k}(\mathrm{id})=\kappa \,(\mathrm{k} \, \mathrm{T} / \mathrm{h}) \, \mathrm{K}^{\neq} \nonumber \]

    For a real system,

    \[\mathrm{k}=\mathrm{k}(\mathrm{id}) \, \mathrm{y}_{\mathrm{X}}(\mathrm{aq}) \, \mathrm{y}_{\mathrm{Y}}(\mathrm{aq}) / \mathrm{y}_{\neq}(\mathrm{aq}) \nonumber \]

    The Bronsted-Bjerrum analysis concerns rates of chemical reaction between ions having electric charges, \(\mathrm{z}_{\mathrm{x}} \, \mathrm{e}\) and \(\mathrm{z}_{\mathrm{y}} \, \mathrm{e}\) where the transition state has charge z ⋅ e ≠ ( z e z e) X Y = ⋅ + ⋅ .

    In most applications, the activity coefficients are related to the ionic strength of the solution using the Debye - Huckel Limiting Law. For reactant \(\mathrm{j}\),

    \[\ln \left(\mathrm{y}_{\mathrm{j}}\right)=-\mathrm{S}_{\mathrm{Y}} \, \mathrm{z}_{\mathrm{j}}^{2} \,\left(\mathrm{I} / \mathrm{m}^{0}\right)^{1 / 2} \nonumber \]

    Then,

    \[\ln (\mathrm{k})=\ln (\mathrm{k}(\mathrm{id}))+\ln \left(\mathrm{y}_{\mathrm{X}}\right)+\ln \left(\mathrm{y}_{\mathrm{Y}}\right)-\ln \left(\mathrm{y}_{z}\right) \nonumber \]

    \[\ln (\mathrm{k})=\ln (\mathrm{k}(\mathrm{id}))-\mathrm{S}_{\mathrm{y}} \,\left(\mathrm{I} / \mathrm{m}^{0}\right)^{1 / 2} \,\left[\mathrm{z}_{\mathrm{X}}^{2}+\mathrm{z}_{\mathrm{Y}}^{2}-\left(\mathrm{z}_{\mathrm{X}}+\mathrm{z}_{\mathrm{Y}}\right)^{2}\right] \nonumber \]

    Or,

    \[\ln (\mathrm{k})-\ln (\mathrm{k}(\mathrm{id}))=\mathrm{S}_{\mathrm{y}} \,\left(\mathrm{I} / \mathrm{m}^{0}\right)^{1 / 2} \,\left[2 \, \mathrm{z}_{\mathrm{X}} \, \mathrm{Z}_{\mathrm{Y}}\right] \nonumber \]

    Equation (m) forms the basis of the classic and oft-quoted plot of \([\ln (\mathrm{k})-\ln (\mathrm{k}(\mathrm{id}))]\) against \(\left(\mathrm{I} / \mathrm{m}^{0}\right)^{1 / 2}\) in which the slope is determined by the product of charge numbers, \(\mathrm{z}_{\mathrm{x}} \, \mathrm{z}_{\mathrm{y}}\); [1;see Footnote (1), page 429].

    An interesting feature was noted by Rosseinsky [2]. Equation (m) can be written in a quite general form for a reaction involving \(\mathrm{n}\) ions. Then,

    \[\ln (\mathrm{k})-\ln (\mathrm{k}(\mathrm{id}))=\mathrm{S}_{\mathrm{y}} \,\left(\mathrm{I} / \mathrm{m}^{0}\right)^{1 / 2} \, \sum_{\mathrm{i}}^{\mathrm{n}} \sum_{\mathrm{j}}^{\mathrm{n}} \mathrm{z}_{\mathrm{i}} \, \mathrm{z}_{\mathrm{j}} \quad(\mathrm{i} \neq \mathrm{j}) \nonumber \]

    For chemical reaction involving cations and anions , cases can arise where the double sum in equation(n) is zero. Hence the rate constant will be independent of ionic strength. Rosseinsky cites the following reaction as a case in point [3].

    \[2 \mathrm{Mn}^{2+}(\mathrm{aq})+\mathrm{MnO}_{4}^{-} \text {(aq) } \rightarrow \mathrm{Mn}_{3} \mathrm{O}_{4}^{3+} \nonumber \]

    Footnotes

    [1] S. A. Glasstone, K. J. Laidler and H. Eyring, The Theory of Rate Processes, McGraw-Hill, New York, 1941, pp. 427-429.

    [2] D. R. Rosseinsky, J. Chem. Phys.,1968,48, 4806.

    [3] D. R. Rosseinsky and M. J. Nicol, Trans. Faraday Soc.,1965,61, 2718.


    This page titled 1.14.39: Kinetic Salt Effects is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis via source content that was edited to the style and standards of the LibreTexts platform.