Skip to main content
Chemistry LibreTexts

1.14.38: Joule-Thomson Coefficient

  • Page ID
    389234
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    An important property of a given gas is its Joule-Thomson coefficient [1-3]. These coefficients are important from two standpoints;

    1. intermolecular interaction, and
    2. liquefaction of gases.

    A given closed system contains one mole of gaseous chemical substance \(\mathrm{j}\) at temperature \(\mathrm{T}\) and pressure \(\mathrm{p}\). The molar enthalpy of the gas \(\mathrm{H}_{\mathrm{j}}\) describes its molar enthalpy defined by equation (a).

    \[\mathrm{H}_{\mathrm{j}}=\mathrm{H}_{\mathrm{j}}[\mathrm{T}, \mathrm{p}] \nonumber \]

    Then,

    \[\mathrm{dH}_{\mathrm{j}}=\left(\frac{\partial \mathrm{H}_{\mathrm{j}}}{\partial \mathrm{T}}\right)_{\mathrm{p}} \, \mathrm{dT}+\left(\frac{\partial \mathrm{H}_{\mathrm{j}}}{\partial \mathrm{p}}\right)_{\mathrm{T}} \, \mathrm{dp} \nonumber \]

    Hence at constant enthalpy, \(\mathrm{H}\),

    \[\left(\frac{\partial \mathrm{H}_{\mathrm{j}}}{\partial \mathrm{T}}\right)_{\mathrm{p}} \, \mathrm{dT}=-\left(\frac{\partial \mathrm{H}_{\mathrm{j}}}{\partial \mathrm{p}}\right)_{\mathrm{T}} \, \mathrm{dp} \nonumber \]

    Or,

    \[\left(\frac{\partial T}{\partial p}\right)_{H}=-\left(\frac{\partial H_{\mathrm{j}}}{\partial p}\right)_{T} \,\left(\frac{\partial T}{\partial H_{j}}\right)_{p} \nonumber \]

    The Joule-Thomson coefficient for gas \(\mathrm{j}\), \(\mu_[\mathrm{j}}\) is defined by equation (e).

    \[\mu_{\mathrm{j}}=\left(\frac{\partial T}{\partial p}\right)_{\mathrm{H}(\mathrm{j})} \nonumber \]

    For all gases (except helium and hydrogen) at \(298 \mathrm{~K}\) and moderate pressures \(\mu_{\mathrm{j} > 0\). At room temperature and ambient pressure, \(\mu_{\mathrm{j}}\) is \(0.002 \mathrm{~K Pa}^{-1}\) for nitrogen and \(0.025 \mathrm{~K Pa}^{-1}\) for 2,2-dimethylpropane [3].

    Further the isobaric heat capacity for chemical substance \(\mathrm{j}\) is defined by equation (f).

    \[\mathrm{C}_{\mathrm{pj}}=\left(\frac{\partial \mathrm{H}_{\mathrm{j}}}{\partial \mathrm{T}}\right)_{\mathrm{p}} \nonumber \]

    Hence from equations (d), (e) and (f),

    \[\mu_{\mathrm{j}}=-\frac{(\partial \mathrm{H} / \partial \mathrm{p})_{\mathrm{T}}}{\mathrm{C}_{\mathrm{pj}}} \nonumber \]

    Then,

    \[\left(\frac{\partial \mathrm{H}_{\mathrm{j}}}{\partial \mathrm{p}}\right)_{\mathrm{T}}=-\mu_{\mathrm{j}} \, \mathrm{C}_{\mathrm{pj}} \nonumber \]

    Equation (h) marks an important stage in the analysis. For example, \(\mathrm{C}_{\mathrm{pj}} > 0\). From the definition of enthalpy \(\mathrm{H}_{\mathrm{j}}\),

    \[\mathrm{U}_{\mathrm{j}}=\mathrm{H}_{\mathrm{j}}-\mathrm{p} \, \mathrm{V}_{\mathrm{j}} \nonumber \]

    Equation (i) is differentiated with respect to \(\mathrm{V}_{\mathrm{j}} at fixed \(\mathrm{T}\). Thus,

    \[

    \[\left(\frac{\partial \mathrm{U}_{\mathrm{j}}}{\partial \mathrm{V}_{\mathrm{j}}}\right)_{\mathrm{T}}=\left(\frac{\partial \mathrm{H}_{\mathrm{j}}}{\partial \mathrm{V}_{\mathrm{j}}}\right)_{\mathrm{T}}-\mathrm{V}_{\mathrm{j}} \,\left(\frac{\partial \mathrm{p}}{\partial \mathrm{V}_{\mathrm{j}}}\right)_{\mathrm{T}}-\mathrm{p} \nonumber \]

    Or,

    \[\left(\frac{\partial U_{j}}{\partial V_{j}}\right)_{T}=\left(\frac{\partial p}{\partial V_{j}}\right)_{T} \,\left[\left(\frac{\partial H_{j}}{\partial V_{j}}\right)_{T} \,\left(\frac{\partial V_{j}}{\partial p}\right)_{T}-V_{j}\right]-p \nonumber \]

    Then,

    \[\left(\frac{\partial \mathrm{U}_{\mathrm{j}}}{\partial \mathrm{V}_{\mathrm{j}}}\right)_{\mathrm{T}}=\left(\frac{\partial \mathrm{p}}{\partial \mathrm{V}_{\mathrm{j}}}\right)_{T} \,\left[\left(\frac{\partial \mathrm{H}_{\mathrm{j}}}{\partial \mathrm{p}}\right)_{\mathrm{T}}-\mathrm{V}_{\mathrm{j}}\right]-\mathrm{p} \nonumber \]

    Using equation (h),

    \[\left(\frac{\partial U_{j}}{\partial V_{j}}\right)_{T}=-\left(\frac{\partial p}{\partial V_{j}}\right)_{T} \,\left[\mu_{j} \, C_{p j}+V_{j}\right]-p \nonumber \]

    An important application of equation (m) concerns the case where chemical substance \(\mathrm{j}\) is a perfect gas. In this case,

    \[\mathrm{p} \, \mathrm{V}_{\mathrm{j}}=\mathrm{R} \, \mathrm{T} \nonumber \]

    Or,

    \[\mathrm{p}=\mathrm{R} \, \mathrm{T} \, \frac{1}{\mathrm{~V}_{\mathrm{j}}} \nonumber \]

    Hence,

    \[\left(\frac{\partial p}{\partial V_{j}}\right)_{T}=-R \, T \, \frac{1}{V_{j}^{2}}=-\frac{p}{V_{j}} \nonumber \]

    Then from equation (m),

    \[\left(\frac{\partial U_{j}}{\partial V_{j}}\right)_{T}=\frac{p}{V_{j}} \,\left[\mu_{j} \, C_{p j}+V_{j}\right]-p \nonumber \]

    Or,

    \[\left(\frac{\partial U_{j}}{\partial V_{j}}\right)_{T}=\frac{p \, \mu_{j} \, C_{p j}}{V_{j}} \nonumber \]

    But

    \[\operatorname{limit}(\mathrm{p} \rightarrow 0) \frac{\mathrm{p} \, \mu_{\mathrm{j}} \, \mathrm{C}_{\mathrm{pj}}}{\mathrm{V}_{\mathrm{j}}}=0 \nonumber \]

    Then

    \[\operatorname{limit}(\mathrm{p} \rightarrow 0)\left(\frac{\partial \mathrm{U}_{\mathrm{j}}}{\partial \mathrm{V}_{\mathrm{j}}}\right)_{\mathrm{T}}=0 \nonumber \]

    A definition of a perfect gas is that \(\left(\frac{\partial \mathrm{U}_{\mathrm{j}}}{\partial \mathrm{V}_{\mathrm{j}}}\right)_{\mathrm{T}}\) is zero. Then all real gases are perfect in the \(\operatorname{limit}(\mathrm{p} \rightarrow 0)\).

    Footnotes

    [1] James Prescott Joule(12818-1889) William Thomson (1824-1907); Later Lord Kelvin Some authors refer to the Joule-Thomson coefficient; e.g. E. B. Smith, Basic Chemical Thermodynamics, Clarendon Press, Oxford, 1982, 3rd. edn., page 119. Other authors refer to the Joule –Kelvin Effect; e.g. E. F. Caldin, Chemical Thermodynamics, Clarendon Press, Oxford, 1958,page 81. Other authors refer to either the Joule-Thomson or Joule-Kelvin Effect; e.g. M. H. Everdell, Introduction to Chemical Thermodynamics, English Universities Press, London 1965, page 57.

    [2] M. L. McGlashan, Chemical Thermodynamics, Academic Press, London 1979, page 94.

    [3] Benjamin Thompson (1753-1814); later Count von Rumford, married Lavoisier’s widow.


    This page titled 1.14.38: Joule-Thomson Coefficient is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis via source content that was edited to the style and standards of the LibreTexts platform.