Skip to main content
Chemistry LibreTexts

1.14.9: Clausius - Clapeyron Equation

  • Page ID
    373571
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    A give closed system contains chemical substance j present in both liquid and gas phases. The system is at equilibrium. In terms of the Phase Rule, the following parameters are defined; \(\mathrm{P} = 2\), \(\mathrm{C} = 1\) and hence \(\mathrm{F} = 1\). Hence, if the temperature is fixed by the observer, the equilibrium pressure \(\mathrm{p}^{\mathrm{eq}}\) is defined. The equilibrium can be described in terms of an equality of chemical potentials of pure liquid and pure gas.

    \[\mu_{\mathrm{j}}^{*}(\ell ; \mathrm{T} ; \mathrm{p})=\mu_{\mathrm{j}}^{*}(\mathrm{gp} ; \mathrm{T} ; \mathrm{p}) \label{a}\]

    Both chemical potentials in Equation \ref{a} are functions of both \(\mathrm{T}\) and \(\mathrm{p}\). In general terms,

    \[\mathrm{d} \mu_{\mathrm{j}}^{*}(\ell ; \mathrm{T} ; \mathrm{p})=\left(\frac{\partial \mu_{\mathrm{j}}^{*}(\ell ; \mathrm{T} ; \mathrm{p})}{\partial \mathrm{T}}\right)_{\mathrm{p}} \, \mathrm{dT}+\left(\frac{\partial \mu_{\mathrm{j}}^{*}(\ell ; \mathrm{T} ; \mathrm{p})}{\partial \mathrm{p}}\right)_{\mathrm{T}} \, \mathrm{dp} \label{b}\]

    or

    \[ \mathrm{d} \mu_{\mathrm{j}}^{*}(\ell ; \mathrm{T} ; \mathrm{p})=-\mathrm{S}_{\mathrm{j}}^{*}(\ell ; \mathrm{T} ; \mathrm{p}) \, \mathrm{dT}+\mathrm{V}_{\mathrm{j}}^{*}(\ell ; \mathrm{T} ; \mathrm{p}) \, \mathrm{dp} \label{c}\]

    Similarly

    \[\mathrm{d} \mu_{\mathrm{j}}^{*}(\mathrm{gp} ; \mathrm{T} ; \mathrm{p})=-\mathrm{S}_{\mathrm{j}}^{*}(\mathrm{gp} ; \mathrm{T} ; \mathrm{p}) \, \mathrm{dT}+\mathrm{V}_{\mathrm{j}}^{*}(\mathrm{gp} ; \mathrm{T} ; \mathrm{p}) \, \mathrm{dp} \label{d}\]

    The condition in Equation \ref{a} applies at all \(\mathrm{T}\) and \(\mathrm{p}\).

    \[\begin{aligned}
    &\text { Then, }-\mathrm{S}_{\mathrm{j}}^{*}(\ell ; \mathrm{T} ; \mathrm{p}) \, \mathrm{dT}+\mathrm{V}_{\mathrm{j}}^{*}(\ell ; \mathrm{T} ; \mathrm{p}) \, \mathrm{dp} \\
    &=-\mathrm{S}_{\mathrm{j}}^{*}(\mathrm{gp} ; \mathrm{T} ; \mathrm{p}) \, \mathrm{dT}+\mathrm{V}_{\mathrm{j}}^{*}(\mathrm{gp} ; \mathrm{T} ; \mathrm{p}) \, \mathrm{dp}
    \end{aligned}\]

    or [1],

    \[\left(\frac{\mathrm{dp}}{\mathrm{dT}}\right)^{e q}=\frac{\mathrm{S}_{\mathrm{j}}^{*}(\mathrm{gp} ; \mathrm{T} ; \mathrm{p})-\mathrm{S}_{\mathrm{j}}^{*}(\ell ; \mathrm{T} ; \mathrm{p})}{\mathrm{V}_{\mathrm{j}}^{*}(\mathrm{gp} ; \mathrm{T} ; \mathrm{p})-\mathrm{V}_{\mathrm{j}}^{*}(\ell ; \mathrm{T} ; \mathrm{p})}\]

    \[\left(\frac{\mathrm{dp}}{\mathrm{dT}}\right)^{\mathrm{eq}}=\frac{\Delta_{\mathrm{vap}} \mathrm{S}_{\mathrm{j}}^{*}(\mathrm{~T} ; \mathrm{p})}{\Delta_{\text {vap }} \mathrm{V}_{\mathrm{j}}^{*}(\mathrm{~T} ; \mathrm{p})}\]

    But at equilibrium,

    \[\Delta_{\text {vap }} \mathrm{G}_{\mathrm{j}}^{*}(\mathrm{~T} ; \mathrm{p})=\Delta_{\text {vap }} \mathrm{H}_{\mathrm{j}}^{*}(\mathrm{~T} ; \mathrm{p})-\mathrm{T} \, \Delta_{\text {vap }} \mathrm{S}_{\mathrm{j}}^{*}(\mathrm{~T} ; \mathrm{p})=0\]

    \[\left(\frac{\mathrm{dp}}{\mathrm{dT}}\right)^{\text {eq }}=\frac{\Delta_{\text {vap }} \mathrm{H}_{\mathrm{j}}^{*}(\mathrm{~T} ; \mathrm{p})}{\mathrm{T} \, \Delta_{\mathrm{vap}} \mathrm{V}_{\mathrm{j}}^{*}(\mathrm{~T} ; \mathrm{p})}\]

    The latter is the Clausius-Clapeyron Equation [2]. In a modern development, equation (i) was exactly integrated [3]. Equation(i) does not have the form of an exact differential in the independent variables \(\mathrm{p}\) and \(\mathrm{T}\).[3] The corresponding integrating factor is \(\mathrm{T}^{-1} \, \Delta_{\text {vap }} \mathrm{V}_{\mathrm{j}}^{*}\).

    Thus

    \[\mathrm{T}^{-1} \, \Delta_{\text {vap }} \mathrm{V}_{\mathrm{j}}^{*} \, \mathrm{dp}-\mathrm{T}^{-2} \, \Delta_{\text {vap }} \mathrm{H}_{\mathrm{j}}^{*} \, \mathrm{dT}=0\]

    or,

    \[\mathrm{T}^{-1} \, \Delta_{\text {vap }} \mathrm{V}_{\mathrm{j}}^{*} \, \mathrm{dp}+\Delta_{\text {vap }} \mathrm{H}_{\mathrm{j}}^{*} \, \mathrm{dT}^{-1}=0\]

    The latter equation is an exact differential as a consequence of equation (\(\ell\)) [4].

    \[\left(\frac{\partial\left(\mathrm{T}^{-1} \, \Delta_{\text {vap }} \mathrm{V}_{\mathrm{j}}^{*}\right)}{\partial \mathrm{T}^{-1}}\right)_{\mathrm{p}}=\left(\frac{\partial \Delta_{\mathrm{vap}} \mathrm{H}_{\mathrm{j}}^{*}}{\partial \mathrm{p}}\right)_{\mathrm{T}}\]

    A mathematical solution is known for differential equations having the form of equation (k) [3]. A comprehensive set of equations have been derived describing first order transitions for pure substances [5] and hence the phase equilibrium curves For liquid-vapour equilibria, both \(\Delta_{\text {vap }} \mathrm{H}_{\mathrm{j}}^{*}(\mathrm{~T} ; \mathrm{p}) \text { and } \Delta_{\text {vap }} \mathrm{V}_{\mathrm{j}}^{*}(\mathrm{~T} ; \mathrm{p}) \text { are }>0\). Therefore the equilibrium vapor pressure of a liquid increases with increase in temperature. A useful approximation assumes that gas \(j\) is a perfect gas; i.e. \(\mathrm{p} \, \mathrm{V}_{\mathrm{j}}^{*}(\mathrm{gp})=\mathrm{R} \, \mathrm{T}\) and \(\mathrm{V}_{\mathrm{j}}^{*}(\mathrm{gp} ; \mathrm{T} ; \mathrm{p})>>\mathrm{V}_{\mathrm{j}}^{*}(\mathrm{l} ; \mathrm{T} ; \mathrm{p})\).

    \[\left(\frac{\mathrm{d} \ln (\mathrm{p})}{\mathrm{dT}}\right)^{\text {eq }}=\frac{\Delta_{\text {vap }} \mathrm{H}_{\mathrm{j}}^{*}(\mathrm{~T} ; \mathrm{p})}{\mathrm{R} \, \mathrm{T}^{2}}\]

    \[\left(\frac{\mathrm{d} \ln (\mathrm{p})}{\mathrm{d}\left(\mathrm{T}^{-1}\right)}\right)^{\mathrm{eq}}=-\frac{\Delta_{\mathrm{vap}} \mathrm{H}_{\mathrm{j}}^{*}(\mathrm{~T} ; \mathrm{p})}{\mathrm{R}}\]

    Within the limits of the approximations outlined above, \(\ln \left(p^{e q}\right)\) is a linear function of \(\mathrm{T}^{-1}\).

    Exactly integrated equations have also been established for other first-order transitions (\(\mathrm{p}{\mathrm{eq}}\), \(\mathrm{T}{\mathrm{eq}}\)) curves of pure substances [5].

    Footnotes

    [1] \(\frac{\left[\mathrm{N} \mathrm{m}^{-2}\right]}{[\mathrm{K}]}=\frac{\left[\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}\right]}{\left[\mathrm{m}^{3} \mathrm{~mol}^{-1}\right]}=\frac{\left[\mathrm{J} \mathrm{m}^{-3}\right]}{[\mathrm{K}]}=\frac{\left[\mathrm{N} \mathrm{m}^{-2}\right]}{[\mathrm{K}]}\)

    [2] We have derived the equation for vapor-liquid equilibrium which is the generally quoted form. An equivalent form expresses \(\left(\frac{\mathrm{dp}}{\mathrm{dT}}\right)^{e q}\) for the equilibrium for chemical substance \(j\) in two phases \(\alpha\) and \(\beta\).

    [3] C. Mosselman, W. H. van Vugt and H. Vos, J. Chem. Eng. Data 1982,27,246.

    [4] From \(\mathrm{dH}=\mathrm{T} \, \mathrm{dS}+\mathrm{V} \, \mathrm{dp}\)

    \(\begin{aligned}
    &\left(\frac{\partial \mathrm{H}}{\partial \mathrm{p}}\right)_{\mathrm{T}}=\mathrm{T} \, \left(\frac{\partial \mathrm{S}}{\partial \mathrm{p}}\right)_{\mathrm{T}}+\mathrm{V} \\
    &\left(\frac{\partial \mathrm{H}}{\partial \mathrm{p}}\right)_{\mathrm{T}}=-\mathrm{T} \, \left(\frac{\partial \mathrm{V}}{\partial \mathrm{T}}\right)_{\mathrm{T}}+\mathrm{V} \\
    &\left(\frac{\partial \mathrm{H}}{\partial \mathrm{p}}\right)_{\mathrm{T}}=\mathrm{T}^{-1} \, \left(\frac{\partial \mathrm{V}}{\partial \mathrm{T}^{-1}}\right)_{\mathrm{T}}+\mathrm{V} \\
    &\left(\frac{\partial \mathrm{H}}{\partial \mathrm{p}}\right)_{\mathrm{T}}=\left(\frac{\partial\left(\mathrm{T}^{-1} \, \mathrm{V}\right)}{\partial \mathrm{T}^{-1}}\right)_{\mathrm{T}}
    \end{aligned}\)

    [5] L. Q. Lobo and A. G. M. Ferreira, J. Chem. Thermodyn., 2001,33,1597.


    This page titled 1.14.9: Clausius - Clapeyron Equation is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.