Skip to main content
Chemistry LibreTexts

1.12.20: Expansions- Isentropic- Liquid Mixtures

  • Page ID
    377817
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    A given binary liquid mixture has mole fraction \(x_{1}\left[=1-x_{2}\right]\) at temperature \(\mathrm{T}\) and pressure \(\mathrm{p}\). The system is at equilibrium at a minimum in Gibbs energy where the affinity for spontaneous change is zero. The molar volume and molar entropy of the mixtures are given by equations (a) and (b).

    \[\mathrm{V}_{\mathrm{m}}=\mathrm{V}_{\mathrm{m}}\left[\mathrm{T}, \mathrm{p}, \mathrm{x}_{1}\right] \nonumber \]

    \[\mathrm{S}_{\mathrm{m}}=\mathrm{S}_{\mathrm{m}}\left[\mathrm{T}, \mathrm{p}, \mathrm{x}_{1}\right] \nonumber \]

    These two equations describe the properties of the system in the \(\mathrm{T}-\mathrm{p}\)-composition domain; i.e. a Gibbsian description. We consider two dependences of the volume on temperature under the constraint that the affinity for spontaneous change remains at zero; i.e equilibrium expansions.The isobaric expansion is defined by equation (c).

    \[\mathrm{E}_{\mathrm{p}}(\operatorname{mix})=\left(\frac{\partial \mathrm{V}(\operatorname{mix})}{\partial \mathrm{T}}\right)_{\mathrm{p}} \nonumber \]

    The isentropic expansion is defined by equation (d)

    \[\mathrm{E}_{\mathrm{S}}(\operatorname{mix})=\left(\frac{\partial \mathrm{V}(\operatorname{mix})}{\partial \mathrm{T}}\right)_{\mathrm{S}} \nonumber \]

    In the latter case the system tracks a path with increase in temperature where the affinity for spontaneous change remains at zero and the entropy remains the same at that defined by equation (b). [\(\mathrm{NB} \mathrm{~E}_{p}(\operatorname{mix})\) and \(E_{S}(\operatorname{mix})\) as defined by equations (c) and (d) are extensive properties.] The two expansions are related through the (equilibrium) isobaric heat capacity \(\mathrm{C}_{\mathrm{p}} (\operatorname{mix})\)and the (equilibrium) isothermal compression \(\mathrm{K}_{\mathrm{T}}(\operatorname{mix})\) [1]. Thus

    \[\mathrm{E}_{\mathrm{S}}(\operatorname{mix})=\mathrm{E}_{\mathrm{p}}(\operatorname{mix})-\frac{\mathrm{C}_{\mathrm{p}}(\operatorname{mix}) \, \mathrm{K}_{\mathrm{T}}(\operatorname{mix})}{\mathrm{T} \, \mathrm{E}_{\mathrm{p}}(\operatorname{mix})} \nonumber \]

    In the context of the property \(\mathrm{E}_{\mathrm{p}(\operatorname{mix})\), the entropy of the system changes with an increase in temperature at constant pressure. But by definition the entropy does not change for an isentropic expansion, \(\mathrm{E}_{\mathrm{S}(\operatorname{mix})\).

    For a binary liquid mixture having ideal thermodynamic properties,

    \[E_{S}(\operatorname{mix} ; i d)=E_{p}(\operatorname{mix} ; i d)-\frac{C_{p}(\operatorname{mix} ; i d) \, K_{T}(\operatorname{mix} ; i d)}{T \, E_{p}(\operatorname{mix} ; i d)} \nonumber \]

    In this comparison we note that \(\mathrm{E}_{\mathrm{p}(\operatorname{mix})\) and \(\mathrm{E}_{\mathrm{p}}(\operatorname{mix} ; \mathrm{id})\) refer to the same pressure but the entropies referred to in \(\mathrm{E}_{\mathrm{S}}(\operatorname{mix})\) and \(\mathrm{E}_{\mathrm{S}}(\operatorname{mix} ; \mathrm{id})\) are not the same. The same contrast arises when we set out the two equations describing expansions of the pure liquids.

    \[\mathrm{E}_{\mathrm{S} 1}^{*}(\ell)=\mathrm{E}_{\mathrm{p} 1}^{*}(\ell)-\frac{\mathrm{C}_{\mathrm{p} 1}^{*}(\ell) \, \mathrm{K}_{\mathrm{T} 1}^{*}(\ell)}{\mathrm{T} \, \mathrm{E}_{\mathrm{p} 1}^{*}(\ell)} \nonumber \]

    \[\mathrm{E}_{\mathrm{S} 2}^{*}(\ell)=\mathrm{E}_{\mathrm{p} 2}^{*}(\ell)-\frac{\mathrm{C}_{\mathrm{p} 2}^{*}(\ell) \, \mathrm{K}_{\mathrm{T} 2}^{*}(\ell)}{\mathrm{T} \, \mathrm{E}_{\mathrm{p} 2}^{*}(\ell)} \nonumber \]

    The subject is complicated by the galaxy of entropies implied by the phrase ‘at constant entropy’.

    Footnote

    [1] Using a calculus operation,

    \[\left(\frac{\partial \mathrm{V}}{\partial \mathrm{T}}\right)_{\mathrm{S}}=\left(\frac{\partial \mathrm{V}}{\partial \mathrm{T}}\right)_{\mathrm{p}}-\left(\frac{\partial \mathrm{S}}{\partial \mathrm{T}}\right)_{\mathrm{p}} \,\left(\frac{\partial \mathrm{p}}{\partial \mathrm{S}}\right)_{\mathrm{T}} \,\left(\frac{\partial \mathrm{V}}{\partial \mathrm{p}}\right)_{\mathrm{T}} \nonumber \]

    We note two Maxwell equations. From \(\mathrm{U}=\mathrm{U}[\mathrm{S}, \mathrm{V}], \quad \partial^{2} \mathrm{U} / \partial \mathrm{S} \, \partial \mathrm{V}=\partial^{2} \mathrm{U} / \partial \mathrm{V} \, \partial \mathrm{S}\) Then

    \[\left(\frac{\partial \mathrm{T}}{\partial \mathrm{V}}\right)_{\mathrm{s}}=-\left(\frac{\partial \mathrm{p}}{\partial \mathrm{S}}\right)_{\mathrm{V}} \nonumber \]

    We invert the latter equation. Hence

    \[\begin{aligned}
    \mathrm{E}_{\mathrm{S}}=&\left(\frac{\partial \mathrm{V}}{\partial \mathrm{T}}\right)_{\mathrm{s}}=-\left(\frac{\partial \mathrm{S}}{\partial \mathrm{p}}\right)_{\mathrm{V}}=\left(\frac{\partial \mathrm{V}}{\partial \mathrm{p}}\right)_{\mathrm{s}} \,\left(\frac{\partial \mathrm{S}}{\partial \mathrm{V}}\right)_{\mathrm{p}} \\
    &=-\mathrm{K}_{\mathrm{S}} \,\left(\frac{\partial \mathrm{S}}{\partial \mathrm{T}}\right)_{\mathrm{p}} \,\left(\frac{\partial \mathrm{V}}{\partial \mathrm{T}}\right)_{\mathrm{p}}=-\mathrm{K}_{\mathrm{s}} \, \mathrm{C}_{\mathrm{p}} / \mathrm{T} \, \mathrm{E}_{\mathrm{p}}
    \end{aligned} \nonumber \]

    Similarly

    \[\partial^{2} \mathrm{G} / \partial \mathrm{T} \, \partial \mathrm{p}=\partial^{2} \mathrm{G} / \partial \mathrm{p} \, \partial \mathrm{T} \nonumber \]

    Then,

    \[E_{p}=\left(\frac{\partial V}{\partial T}\right)_{p}=-\left(\frac{\partial S}{\partial p}\right)_{T} \nonumber \]

    Also at equilibrium, \(\mathrm{S}=-\left(\frac{\partial \mathrm{G}}{\partial \mathrm{T}}\right)_{\mathrm{p}}\)

    But \(\mathrm{G}=\mathrm{H}-\mathrm{T} \, \mathrm{S}\). Then \(\mathrm{H}=\mathrm{G}-\mathrm{T} \,\left(\frac{\partial \mathrm{G}}{\partial \mathrm{T}}\right)_{\mathrm{p}}\)

    \[\frac{\partial \mathrm{H}}{\partial \mathrm{T}}=\frac{\partial \mathrm{G}}{\partial \mathrm{T}}-\mathrm{T} \,\left(\frac{\partial^{2} \mathrm{G}}{\partial \mathrm{T}^{2}}\right)-\frac{\partial \mathrm{G}}{\partial \mathrm{T}} \nonumber \]

    Further,

    \[\left(\frac{\partial \mathrm{H}}{\partial \mathrm{T}}\right)_{\mathrm{p}}=\mathrm{C}_{\mathrm{p}}=-\mathrm{T} \,\left(\frac{\partial^{2} \mathrm{G}}{\partial \mathrm{T}^{2}}\right)_{\mathrm{p}}=\mathrm{T} \,\left(\frac{\partial \mathrm{S}}{\partial \mathrm{T}}\right)_{\mathrm{p}} \nonumber \]

    Based on equation (a), \(\mathrm{E}_{\mathrm{S}}=\mathrm{E}_{\mathrm{p}}-\mathrm{C}_{\mathrm{p}} \, \mathrm{K}_{\mathrm{T}} / \mathrm{T} \, \mathrm{E}_{\mathrm{p}}\)


    This page titled 1.12.20: Expansions- Isentropic- Liquid Mixtures is shared under a Public Domain license and was authored, remixed, and/or curated by Michael J Blandamer & Joao Carlos R Reis via source content that was edited to the style and standards of the LibreTexts platform.