Skip to main content
Chemistry LibreTexts

1.12.19: Expansions- Solutions- Isentropic Dependence of Partial Molar Volume on Temperature

  • Page ID
    377816
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    We switch the condition on a derivative expressing the dependence of partial molar volume on temperature.

    \[\left(\frac{\partial \mathrm{V}_{\mathrm{j}}}{\partial \mathrm{T}}\right)_{\mathrm{s}}=\left(\frac{\partial \mathrm{V}_{\mathrm{j}}}{\partial \mathrm{T}}\right)_{\mathrm{p}}+\left(\frac{\partial \mathrm{V}_{\mathrm{j}}}{\partial \mathrm{p}}\right)_{\mathrm{T}}\left(\frac{\partial \mathrm{p}}{\partial \mathrm{T}}\right)_{\mathrm{s}}\]

    Then

    \[\left(\frac{\partial V_{j}}{\partial T}\right)_{\mathrm{s}}=E_{p j}-\left(\frac{\partial V_{j}}{\partial p}\right)_{T} \, \frac{(\partial S / \partial T)_{p}}{(\partial S / \partial p)_{T}}\]

    Or,

    \[\left(\frac{\partial \mathrm{V}_{\mathrm{j}}}{\partial \mathrm{T}}\right)_{\mathrm{S}}=\mathrm{E}_{\mathrm{pj}}+\frac{(\partial \mathrm{S} / \partial \mathrm{T})_{\mathrm{p}}}{(\partial \mathrm{S} / \partial \mathrm{p})_{\mathrm{T}}} \, \mathrm{K}_{\mathrm{T}_{\mathrm{j}}}\]

    But

    \[\frac{(\partial S / \partial T)_{p}}{(\partial S / \partial p)_{T}}=-\frac{C_{p}}{T \,(\partial V / \partial T)_{p}}=-\frac{C_{p}}{T \, V \, \alpha_{p}}\]

    Or,

    \[\frac{(\partial \mathrm{S} / \partial \mathrm{T})_{\mathrm{p}}}{(\partial \mathrm{S} / \partial \mathrm{p})_{\mathrm{T}}}=-\frac{\sigma}{\mathrm{T} \, \alpha_{\mathrm{p}}}\]

    Hence,

    \[\left(\frac{\partial \mathrm{V}_{\mathrm{j}}}{\partial \mathrm{T}}\right)_{\mathrm{s}}=\mathrm{E}_{\mathrm{pj}}-\frac{\sigma}{\mathrm{T} \, \alpha_{\mathrm{p}}} \, \mathrm{K}_{\mathrm{T}_{\mathrm{j}}}\]